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a b s t r a c t 

The nonlinear molecular deformation of the ferronematic liquid crystal in the presence of external ap- 

plied magnetic field intensity is investigated in view of solitons for the director axis. The Frank’s free 

energy density of the nematic liquid crystal comprising the basic elastic deformations, molecular de- 

formation associated with the nematic molecules and the suspended ferromagnetic particles and their 

interactions with magnetic field intensity is deduced to a sine-Gordon like equation using the classical 

Euler–Lagrange’s equation. Using the small angle approximation we establish the Ginzburg–Landau (GL) 

equation and a class of solutions are obtained. In the normal condition of large angle oscillation of the 

director axis, we constructed a damped sine-Gordon (sG) equation with the additional perturbation ap- 

pears in the form of cosine function. The sG equation is solved using numerical simulation and kink 

excitations were obtained as the molecular deformation for the case of constant damping and distorted 

kink to a planar configuration transition as we increase the damping. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Molecular deformation in nematic liquid crystal (NLC) is an in- 

teresting object of study in the community of nonlinear science 

[1–3] . Due to its preferred geometrical structures owing to the 

elastic constants leading to the splay, bend and twist type defor- 

mations the average molecular orientations of the NLC is repre- 

sented in the form of the director n . The inclusion of the exter- 

nal fields and the forces exerted by the boundaries of the nematic 

container leads to the imbalance of the NLC molecules thereby cre- 

ating an effective torque. The governing dynamical equation can 

be framed by balancing the effective torque induced by the vis- 

cous field with that of the elastic and external fields. In this con- 

text recently the impact of the magnetic field associated with the 

NLC is widely studied because doping the ferromagnetic nanopar- 

ticles in the nematic system can enrich molecular excitations be- 

cause all liquid crystal materials are completely diamagnetic. The 

idea of dispersing the ferroparticles in nematic was first proposed 

by Brochard and de Gennes in 1970 [4] . In the absence of fer- 

roparticles the nematic liquid crystal material requires magnetic 

field as high as 1 kOe in order to achieve appreciable molecu- 

lar deformations. However, for ferronematic all it requires is just 
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a minimum field strength of 10 Oe to control their orientations. 

In the ferronematic liquid crystal the magneto-optical and orienta- 

tional effect is highly influenced by the applied magnetic field [5] . 

The magneto-optical response is affected by the coupling energy 

between nematic molecules and suspended ferromagnetic parti- 

cles. There exist a threshold value of the coupling energy below 

which no significant effect in the dynamics was observed. For a 

strong coupling between the molecules the system undergoes the 

Freedericksz transition i.e. the initial uniform state is changed to 

a non-uniform state and beyond this transition the director and 

the magnetization rotates uniformly in the field direction. There 

exist another interesting transition for the weak coupling energy 

where uniform compensated phase corresponding to the director- 

magnetization parallel to the orientation axis at the boundaries 

change to non-uniform phase and uniform saturation phase cor- 

responding the director parallel to the orientation axis and mag- 

netization align parallel to the applied field to a non-uniform sat- 

urated phase. In view of the electromagnetic field effects ferrone- 

matic liquid crystal act as a perfect polarizer for the polarization 

grating device [6] . It is found that the critical thickness of the po- 

larizing device is inversely proportional to the dimensions of the 

suspended ferromagnetic particles and using the thicker cells we 

can manipulate the device performance with smaller applied mag- 

netic fields. The critical thickness and the threshold field for the 

Freedericksz transition can be reduced by proper construction of 

the boundary walls for the weak anchoring. The results reported 
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so far in the context of ferronematic materials is primarily focused 

on phase transition and its implication in constructing magneto- 

optical devices but however the soliton excitations in ferronematic 

liquid crystal is another interesting study which is not reported 

earlier. In this paper we present a systematic formulation of the 

nonlinear dynamics of the ferronematic liquid crystal in the frame 

of solitons. The paper is organized as follows. In Section 2 , we for- 

mulate the relevant dynamical equation by considering the free en- 

ergy density along with the Euler-Lagrange equations. In Section 3 , 

class of solution were reported for the Ginzburg–Landau equation 

as a deduction of the sine-Gordon like equation. The perturbed 

sine-Gordon equation is derived in Section 4 and the numerical 

simulation performed on the perturbed sine-Gordon equation and 

the effect of full nonlinearity is discussed in Section 5 . Finally, the 

conclusions are presented in Section 6 . 

2. Molecular fields and dynamics 

We consider ferromagnetic particles that are dispersed into 

the nematic liquid crystal. The dispersed ferroparticles generates a 

strong agglomeration which leads to a magnetic particle string for- 

mation ( Fig. 1 ). We focus on one such magnetic string and frame 

the dynamics. The free energy density of the ferronematic liquid 

crystal for the director orientation θ ( z, t ) about the z direction 

reads 
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In Eq. (1) , the first two terms on the left side corresponds to the 

splay and bend type deformation with elastic constants K 1 , K 3 , χa , 

χ F are the magnetic anisotropies of the nematic and the ferro- 

magnetic nanoparticles, p is the ferroparticles concentration in the 

mixture (volumetric fraction), B a is the magnetic field intensity di- 

rected along the z direction, μ0 is the magnetic permeability of 

vacuum, the factor w can be written using the anchoring energy 

w 0 , the anchoring angle α and the radius of the magnetic particle 

string R [7] 

w = 

w 0 p 

R 

(1 − 3 cos 2 α) . (2) 

The nonlinear molecular deformations in the ferronematic matrix 

can be investigated by minimizing the free energy through the 

Euler–Lagrange equations for the dynamical variables θ and β , and 

Fig. 1. The ferronematic liquid crystal with director and magnetic particle string 

orientation. 

it is given by 
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We substitute the free energy density (1) in Euler–Lagrange Eq. (4) , 

yields 
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which in small angle approximation for β , leads to [8] 
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Using the Eq. (3) and reporting all the free energies into the same, 

the effective molecular field can be written as 
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In addition to the effective molecular field the nematic molecule 

is always driven by the viscous field due to the rotational effect 

along with the coupling of director axis with that of the fluid mo- 

tion. In many cases the effect of director coupling with the fluid 

motion can be neglected in the limit of low fluid velocity. The vis- 

cous field is given by γ1 
∂θ
∂t 

. The dynamical equation can be written 

by balancing the molecular field with that of the viscous field one 

can write the equation as 
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The coefficient γ 1 is the viscosity coefficient associated with the 

pure rotational motion of the director axis. The coefficient A 0 = (
4 w 

2 

2 w + B 2 a χF μ
−1 
0 

p 

)
. Thus, the molecular excitation in the ferronematics 

liquid crystal is governed by a sine-Gordon-like equation. 

3. Solution through Ginzburg–Landau equation 

The sine-Gordon like equation obtained in the previous section 

can be reduced to a more standard nonlinear equation. We apply 

the transformation θ = 

3 
2 θ

′ and drop the prime, we have 
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In the limit of small angle oscillation, the deviation of direc- 

tor from the equilibrium state is assumed to be very small, i.e. 

θ ( z ) < < 1 and under this small angle and one elastic constant ap- 

proximation ( K 1 = K 3 = K) the dynamical Eq. (9) leads to 
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The reorientation dynamics of the director axis can be understood 

by solving Eq. (10) using a multiscale expansion procedure [9] for 

the solution in the form 
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