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a b s t r a c t

Weconsider twomodels of biological swarmbehavior. In thesemodels, pairs of particles interact to adjust
their velocities one to each other. In the first process, called ’BDG’, they join their average velocity up
to some noise. In the second process, called ’CL’, one of the two particles tries to join the other one’s
velocity. This paper establishes the master equations and BBGKY hierarchies of these two processes. It
investigates the infinite particle limit of the hierarchies at large time scales. It shows that the resulting
kinetic hierarchy for the CL process does not satisfy propagation of chaos. Numerical simulations indicate
that the BDG process has similar behavior to the CL process.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The derivation of kinetic equations from particle models of
swarming behavior has recently received a great deal of attention.
In biological swarm modeling, the most widely used models are
particle ones (also known as ‘Individual-Based Models’) [1–5].
However, to investigate the large scale behavior of biological
systems such as fish schools or insect swarms, kinetic [6–10]
and hydrodynamic [2,11,12] models have proved to be valuable
alternatives. The question of showing a rigorous link between the
particle and kinetic levels is mostly open. In [13], a mean-field
limit of the Vicsek particle model [5] is performed and leads to
a nonlinear Fokker–Planck equation proposed in [14]. A similar
program has been performed for the Cucker–Smale model [15,7].

In this work, we investigate two examples of particle systems
which are representative of swarming behavior: the so-called
BDG and CL processes. These two processes mimic consensus
formation in biological groups in a similar way as the Vicsek
alignment interaction does [5]. But they describe consensus
formation by means of binary interactions, instead of mean-field
type interactions like in [5]. In the first process, called ‘BDG’ (after
Bertin et al. [16,17]), two interacting particles join their average
velocity up to some noise. In the second process, called ‘CL’ (for

∗ Corresponding author at: CNRS, Institut de Mathématiques de Toulouse UMR
5219, F-31062 Toulouse, France.

E-mail addresses: carlen@math.rutgers.edu (E. Carlen),
robin.chatelin@math.univ-toulouse.fr (R. Chatelin),
pierre.degond@math.univ-toulouse.fr (P. Degond), wennberg@chalmers.se
(B. Wennberg).

‘Choose the Leader’ [18]), one of the two particles tries to join
the other one’s velocity up to some noise. In [16,17], Bertin et al.
formally derive a kinetic description of the BDG dynamics where
the interactions are described through a Boltzmann-like collision
operator. In [18], the rigorous derivation of kinetic equations for a
large class of binary interaction processes including the BDG and
CL dynamics is performed in a space-homogeneous setting. The
derivation is based on the proof that these systems satisfy the so-
called ‘propagation of chaos property’. However, this property is
proven on a time scale such that each particle collides only a finite
number of times. Such a time scale is called the ‘kinetic time scale’.

The goal of the present paper is to investigate whether the
propagation of chaos property holds for the BDG and CL processes
on larger time scales. Large time scales are thosewhich are relevant
for hydrodynamic models. Indeed, in order to pass from kinetic
to hydrodynamic equations, a hyperbolic rescaling of the kinetic
equation is needed. This rescaling consists in changing the time
scale to larger ones [19] (it also involves a change of the spatial
scale but in the present work, we ignore the spatial variable). If the
kinetic equation is proved valid at the kinetic scale but invalid at
larger time scales, it is not clear that such a rescaling is meaningful.
That propagation of chaos holds at large time scales compared to
the kinetic one is central for the validity of hydrodynamic models.
This question was already touched upon for the CL dynamics
in [18], where the invariant measure (i.e. the stationary state)
is shown to violate the chaos property. In the present work, we
further elaborate on this question. In particular, we prove that the
violation of the chaos property for the CL process happens in the
course of the dynamics and not only for the stationary state. We
also provide clues that the BDG process must behave in a similar
way.
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However, to investigate scales larger than the kinetic ones
at the particle level, the dynamics must also be rescaled in
some way. In the CL dynamics, if no rescaling of the noise is
performed, the large-scale dynamics is then dominated by the
noise. The noise will ultimately destroy any directional coherence
and will not allow for a hydrodynamic regime to build up. The
appropriate rescaling consists in letting the variance of the noise
tend to zero like the reciprocal of the particle number. In the BDG
dynamics,where consensusmaking (expressed by the choice of the
common average direction) and the noise play more symmetrical
roles, a mere rescaling of the noise is not sufficient. For this
reason, we consider a ‘biased BDG’ dynamics, where the collision
probability depends on the relative velocities of the particles.
Then, the rescaling also involves a grazing collision limit, i.e.
having the collision occur only if the relative velocities of the
two particles are small. In both cases, the small noise regime
precisely corresponds to the emergence of collective motion. The
hydrodynamic description, which supposes a non-zero bulk fluid
velocity is only relevant if collective motion develops. Therefore,
the large time scale validity of propagation of chaos is crucial for
the establishment of hydrodynamic models of collective motion.
This is the question which is addressed here.

In this paper, we focus on space-homogeneous problems
and ignore the spatial variables. Consequently, interactions may
happen among any pair of individuals in the pool with a certain
probability. We also assume that the individuals move in a two-
dimensional space with unit speed. The state of each particle is
described by its velocity vector v on the one-dimensional sphere
S1. The state of an N-particle system can be described by its N-
particle probability FN . In the present framework, FN is a function
of the N velocity coordinates (v1, . . . , vN) on the torus TN

= (S1)N

and of time. The particle dynamics translates into a time-evolution
equation for FN called the ‘master equation’. In [18], we have
investigated the class of ‘pair-interaction driven’master equations,
of which the BDG and CL master equations are members. We have
shown that, as N → ∞, propagation of chaos holds. A propagation
of chaos result states that the solution FN(t) can be approximated
(in a sense to be defined below) by an N-fold tensor product of
the single-particle distribution F1(t) provided that this property
is true initially. This means that the particles become nearly
independent and that the system can be described by its single-
particle distribution F1(t) instead of the N-particle distribution FN .
The dimension of the problem is therefore considerably reduced.

To investigate the large N limit, it is difficult to work with FN
alone. Indeed, the limit of FN as N → ∞ is literally a function
of an infinite number of variables. The functional treatment is
simplified by considering the k-particle marginal FN,k, which is
the joint probability of any subset of k particles. The number
of variables involved in FN,k is k and stays fixed as N → ∞.
The drawback of this method is that the equation satisfied by
FN,k depends on the other marginals FN,k′ in general. Thus, the
equations for the (FN,k)k∈{1,...,N} are all coupled together, forming
the so-called BBGKY hierarchy [19]. When N = ∞, the hierarchy
involves an infinite number of coupled equations and is called
the kinetic hierarchy. Showing a propagation result in the limit
N → ∞ involves breaking the coupling between the equations
in the kinetic hierarchy in some way.

Consensus formation in swarm models should be associated
with the build-up of correlations between the particles over time.
The fact that the BDG and CL models, as a result of [18], satisfy a
propagation of chaos result is counter-intuitive. The resolution of
this paradox lies in the investigation of time scales. Indeed, the
result of [18] is only valid on finite time intervals at the kinetic
scale. On this time scale, the number of collisions undergone by
each particle is bounded independently of N . The present paper
investigates whether correlation build-up happens at larger time

scales. As described above, the investigation of such large time
scales is necessary in view of the establishment of hydrodynamic
models. The investigation of these large time scales at the level
of the particle system requires some rescaling of the processes as
described above.

The main objective of this paper is to establish the kinetic
hierarchies for the rescaled BDG and CL processes. We then
investigate whether these hierarchies possess solutions which
satisfy propagation of chaos. For the CL hierarchy,we show that it is
never the case. In [18], it was already established that the invariant
densities (i.e. the stationary solutions) do not satisfy propagation
of chaos. This was done by looking at the single and two-particle
marginals only. Here, we extend [18] by showing that the time-
dependent solution of the CL hierarchy never satisfies propagation
of chaos either.We also provide a general formula for the k-particle
marginal invariant density.

Concerning the BDG dynamics, the situation is unclear, in
spite of the apparent simplicity of the hierarchy equations. We
notice that uniform densities are stationary solutions of the BDG
hierarchy. However, the question of uniqueness of stationary
solutions for this hierarchy is open. There might exist other
solutions which do not satisfy the chaos property. From [18],
we know that propagation of chaos is true and that the kinetic
equation is valid on the kinetic time scale. The uniformdistribution
is clearly a stationary solution of this kinetic equation. However,
in [17], it is shown that this equilibrium is linearly unstable if
the noise level is small enough (see also [20]). This suggests
the existence of a second class of anisotropic equilibria (similar
to the Von-Mises equilibria of [21,22]). In relation to this other
class of equilibria, there may exist solutions of the rescaled
kinetic hierarchy other than the uniform distributions. These other
solutions may not satisfy the chaos property.

To improve our understanding, we use numerical experiments.
We generate the stationary one and two particle marginals
by running a large number of independent time-dependent
simulations of the particle dynamics. The experimental results
concerning the CL dynamics consolidate the theoretical findings. In
particular, the theoretical and numerical two-particle correlations
show remarkably good agreement. The experimental study of the
BDG dynamics shows a similar behavior to the CL dynamics. For
this reason, it should be expected that the BDG dynamics lacks
chaos property on the large time scale. However, a rigorous result
in this direction is not available yet.

The breakdown of propagation of chaos at time scales larger
than the kinetic one (which is a proven fact in the CL case and
a conjecture in the BDG case) has important consequences. In-
deed, such breakdown indicates that kinetic models may not be
valid at the hydrodynamic scale and may not be usable to derive
hydrodynamic models. In such a case, alternate types of models
or at least, deep modifications of classical kinetic models may be
needed. Finding such models is a fully open problem. This ques-
tion is even more complex in the space-inhomogeneous case (e.g.
for the modeling of a particle swarm), where an analogous result
to [18] is still lacking. The hydrodynamic model of [16,17] is devel-
oped under the assumption of a small perturbation to an isotropic
equilibrium. As long as this assumption remains valid, the under-
lying kinetic hierarchy is close to being factorized. In this regime,
propagation of chaos is valid, at least approximately, and so is the
hydrodynamicmodel. However, if the perturbation to the isotropic
equilibriumbecomes larger, propagation of chaos breaks downand
the validity of the model in this range may be questioned.

In the literature, propagation of chaos has been mainly
investigated in the context of the Boltzmann equation and its
caricature proposed by Kac. Early works involve the names of
Kac, Lanford, McKean and others [23–25]. They have initiated a
considerable activity [26–28]. A new approach has been recently
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