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h i g h l i g h t s

• Exact transparent boundary conditions for the parabolic wave equation are proposed.
• The dialectic permittivity depends linearly or quadratically on the coordinate.
• The integral kernels of these conditions contain only elementary functions.
• The conditions simplify numerical solution of the parabolic equation in open domains.
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a b s t r a c t

In this paper exact 1D transparent boundary conditions (TBC) for the 2D parabolic wave
equation with a linear or a quadratic dependence of the dielectric permittivity on the
transversal coordinate are reported. Unlike the previously derived TBCs they contain only
elementary functions. The obtained boundary conditions can be used to numerically solve
the 2D parabolic equation describing the propagation of light in weakly bent optical
waveguides and fibers including waveguides with variable curvature. They also are useful
when solving the equivalent 1D Schrödinger equation with a potential depending linearly
or quadratically on the coordinate. The prospects and problems of discretization of the
derived transparent boundary conditions are discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Leontovich and Fock introduced the parabolic wave equation (PWE) (also known as the Fresnel equation) about fifty
years ago [1]. The PWE is widely used in radiophysics and oceanic acoustics for modeling electromagnetic wave and sound
propagation [2–4]. An important application of PWE has been found in visible light and X-ray optics, where PWE is used
to describe the propagation of weakly divergent light beams in inhomogeneous media [5]. The PWE can be also used to
describe coherent scattering phenomena in X-ray imaging [6].

A lot of papers have been dedicated to the refinement of the parabolic equationmethod in order to increase its numerical
accuracy and adjust it to specific physical problems (wide-angle version [7], vectorial PWE [8], etc.). However, there are
important applications where the original Leontovich’s approximation still provides excellent accuracy and numerical
efficiency. In particular, in hard X-ray optics, where optical constants are close to unity, Leontovichs PWE is a powerful
tool for modeling complex optical structures such as nano-waveguides [9] and diffraction zone plates [5,10].
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No matter what kind of parabolic equation is concerned, any numerical solution, for instance, by a finite difference (FD)
approximation, requires appropriate boundary conditions (BC) as realistic computational domains are necessary finite,while
the originalwave fieldmight be sought in thewhole space. Such a BCmust substitute accuratewave field calculations outside
the finite computational domain with some relations between its boundary values [11].

There are two main approaches to the computational domain truncation for the parabolic type equations. The first one
is based on an exact analytical solution of the governing PE in the outer domain, free of diffracting objects. Projection of
such a solution onto the computational domain border leads to so called transparent boundary conditions (TBC) [12,13].
Completely different idea underlies the perfectly matched layer (PML) techniques [14,15]: the assumption that a gradual
change of the medium parameters by adding small absorption will cause the outgoing wave attenuation without producing
backward reflection. Both approaches have their advantages and shortcomings: the former one is in a sense exact but may
involve sophisticated derivationswhereas the letter is analytically simpler but basically of approximate nature. In this paper
we will only deal with the former type, which is based on assumption that any wave that reaches the boundary fromwithin
of the computational domain propagates outward and never returns. TBCs are generally non-local Neumann-to-Dirichlet or
Dirichlet-to-Neumann mappings relating the wave field amplitude boundary values with its first derivative a coordinate.

For a general review of TBCs and their applications see [11]. Here we confine ourselves with the original Leontovich
2D PWE. For this equation, i.e. Eq. (1) (see below) with α = 0, a TBC was formulated about twenty years ago and now is
known as Baskakov–Popov–Papadakis (BPP) condition [12,4,13,16]. A TBC for the linear potential (see Eq. (2) below) but for
constant coefficient g(z) = 1 has also been known for a long time [13], although, involving integration of a ratio of Airy
functions to obtain the kernel, it is quite complicated and poses difficulties for the numerical implementation [17]. In this
paper, extending our previous work [18] we contrive to obtain two TBCs for the 2D PWE: (i) one for the linear potential
with varying coefficient g(z) (ii) and one for the quadratic potential (see Eq. (3) below). These TBCs do not involve special
functions and additional integration, having kernels explicitly expressed via elementary functions.We also try to preserve as
much generality as possible by considering in the linear potential case the curvature g(z) to be an arbitrary positive function
of z.

2. Methods

In this paper we will only be concerned with the linear 2D PWE having the following form

2ik
∂u
∂z

+
∂2u
∂x2

+ k2α(x, z)u = 0, (1)

where x and z are coordinates, k = 2π/λ is the wave number and α(x, z) is a finite function. The computational domain is
defined as −x0 < x < x0 where x0 is a positive number. We will also assume that u(0, x) = 0 when |x| > x0. The Eq. (1) is
a full analog of the 1D Schrödinger equation (SE), where z is replaced with time and α is the potential.

The function α(x, z) generally comprises both on the dielectric permittivity of the medium and on a particular choice of
the coordinate system [19]. For instance, in a weakly bent optical waveguide or fiber we can introduce a curvilinear system
of coordinates so that the propagation of light is described by the ordinary PWE but with a fictitious dielectric permittivity,
which is a sum of the true dielectric permittivity α0(x, z) and an additional term resulting from this particular choice of
coordinates.

We will consider two cases for the dependence of α(x, z) on the transversal coordinate x. The first case is that of the
linear dependence with the coefficient itself dependent on z as is shown in the following expression

α(x, z) = α0(x, z) + ag(z)x, (2)

where α0(x, z) is a function having a compact support, i.e. α0(x, z) = 0 outside the computational domain when |x| > x0,
a is a constant and g(z) is a real positive function. So, outside the computational domain we have the PWE with linear
dependence of α(x, z) on coordinate x. It can be shown that in the case of weak bending g(z) = 2/R(z) in the second term
of Eq. (2). In other words g(z) is the curvature of the waveguide or fiber and R(z) is the curvature radius.

In the second case function α(x, z) can be expanded further up to the second order by coordinate x as

α(x, z) = α0(x, z) + bx2, (3)

where α0(x, z) has a compact support as in the previous case and b is a parameter. In (3) we omitted the linear term as
it can be always eliminated by a simple shift of the coordinate system. The 2D PWE with the quadratic dependence of the
potential termon a coordinatemay have applications in thewaveguide theory in optics and acoustics. In case of the quantum
mechanics and 1D SE the quadratic potential describes a particle in a parabolic trap (in case the potential is attractive), which
is itself an interesting problem, and which numerical solution can be greatly facilitated by an appropriate TBC.

We will derive exact TBC from Eq. (1) with both linear and quadratic dependence of α on x by applying to it the Laplace
transform by coordinate x. The transformed equations will be linear and of the first order relative the partial derivatives and
susceptible to the solution by standard methods of the mathematical physics [20]. The final result is obtained by applying
the reverse Laplace transform to the obtained solutions.
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