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The widely-known Gompertz law of mortality states the exponential increase of mortality with age in human
populations. Such an exponential increase is observed at the adulthood span, roughly after the reproductive pe-
riod, while mortality data at young and extremely old ages deviate from it. The heterogeneity of human popula-
tions, i.e. the existence of subpopulations with different mortality dynamics, is a useful consideration that can
explain age-dependentmortality patterns across thewhole life-course. A simplemathematicalmodel combining
the heterogeneity of populations with an assumption that the mortality in each subpopulation grows exponen-
tially with age has been proven to be capable of reproducing the entire mortality pattern in a human population
including the observed peculiarities at early- and late-life intervals. In this work we fit this model to actual
(Swedish)mortality data for consecutive periods and consequently describe the evolution ofmortality dynamics
in terms of the evolution of themodel parameters over time.We have found that the evolution of the model pa-
rameters validates the applicability of the compensation law of mortality to each subpopulation separately. Fur-
thermore, our study has indicated that the population structure changes so that the population tends to become
more homogeneous over time. Finally, our analysis of the decrease of the overall mortality in a population over
time has shown that this decrease ismainly due to a change in the population structure and to a lesser extent to a
reduction of mortality in each of the subpopulations, the latter being represented by an alteration of the param-
eters that outline the exponential dynamics.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical modelling of biological processes such as longevity,
ageing and mortality is of interest for many scientists working on vari-
ous subjects including demography, biology, statistics and actuarial sci-
ences. The event of death and the forces that cause it have puzzled and
inspired many philosophers and scientists from the 17th century on-
wards. Great works such as those by Joseph Addison (1672–1719),
Karl Pearson (1857–1936) and Benjamin Gompertz (1779–1865) give
us insights on the development of the concept of mortality over the
past few centuries (see (Turner and Hanley, 2010) for a review). Addi-
son in his allegorical essay “The vision of Mirza” (Addison, 1711) imag-
ined the human life as a walkthrough over a bridge, “the bridge of
human life”, where hidden pitfalls open periodically and the people
above them fall down and disappear, the forces causing death being
then external. Almost two centuries after Addison, Pearson considered
death as a random event and decomposed the entire mortality curve
into five different phases, described by five different probability distri-
butions (Pearson, 1897). Pearson's concept can be represented with

humans crossing the bridge of life, where at each one of the five stages,
a marksman attempts to kill them. From one stage to the next the pre-
cision of the marksman's weapon improves (five different precisions
for the five different age groups) and consequently the chance of
death increases. On the other hand, the work by Gompertz (1825) is
of greater importance as he was the first who considered death to be
caused by internal forces in organisms and proposed a model for the
force of mortality. According to Gompertz, the mortality force increases
in a geometrical progression within a wide age-range of lifespan, that is
from sexual maturity to considerably old ages. This conception is con-
firmed by many observations and is known as the Gompertz law of
mortality. Mathematically, the Gompertz law represents the mortality
rate mx at age x, as an exponential function of age

mx ¼ m0e
βx ð1Þ

wherem0 is the initial mortality (can be considered as mortality rate at
age 0) and β is the mortality coefficient that gives the rate of change of
mortality with age (strictly speaking the age x in the Gompertz law can
only be varied in a certain range, i.e. between 20 and 80 years).

Observed mortality data and the theoretical force of mortality are
generally plotted in a semi-logarithmic scale where the exponential
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increase of mortality (Eq. (1)) is represented by a straight line. Graphi-
cally the actual mortality data generates patterns which have certain
common features as well as some quantitative differences as compared
to different cohorts and periods. A typicalmortality pattern (Fig. 1) orig-
inates from the initial mortality at age zero, falls down to a minimum
point (approximately at the age of 10), increases to a local maximum
(around the age of 25), then slightly decreases or remains constant and
after the age of 35–40 advances exponentially satisfying the Gompertz
law. At extreme old ages (above the age of 100) there is no common ev-
idence on how themortality curve behaves as the reported observations
are controversial and providedwith different explanations (Gavrilov and
Gavrilova, 2011; Greenwood and Irwin, 1939; Olshansky, 1998). Various
statements made about the mortality dynamics at old ages include
the mortality levelling-off or so-called “late-life mortality plateau”
(Curtsinger et al., 2006; Economos, 1979; Mueller and Rose, 1996),
the late-life mortality deceleration (Depoid, 1973; Gavrilov and
Gavrilova, 2001; Horiuchi and Wilmoth, 1998; Thatcher et al., 1998),
the decline (Kannisto et al., 1994; Vaupel et al., 1998) or fluctuations
at advanced ages (Avraam et al., 2013).

The high initial level of mortality is due to the fact that new-borns
are not particularly fit for the new environment they are born into
and therefore, a relatively high proportion of them are not able to sur-
vive. As the forces of mortality due to environmental factors decrease,
death rates decline. Mortality starts then to increase at the age of 10.
One can state that mortality should increase exponentially from this
age. However in actual mortality data the exponential increase of mor-
tality is observable only after the ages of 35–40 (Fig. 1) as between the
ages 10 and 35 it overlapswith a localmaximumon themortality curve.
This local maximum is apparent at the reproductive period of lifespan
and is commonly called “the accidental hump” as it is related to the ex-
ternal causes of deaths (mainly accidents and maternal deaths) due to
the risky behaviour of young adults.

Many studies have focused on the analysis of exponential increase of
mortality in the range of ages 30 and above. By comparing parame-
ters describing the exponential dynamics for data taken for different
human societies it was found that in developed countries initial mor-
tality, m0, is lower while the mortality coefficient, β, is higher than
these parameters describing data for less developed countries. This
phenomenon, namely the inverse relationship between initialmortality
and mortality coefficient appears to be fundamental (confirmed by all
available data) and called the “compensation law” or “compensation
effect” (Gavrilov and Gavrilova, 1979, 1991).

A number of mathematical models have been proposed to analyse
mortality dynamics and explain its deviations from the exponential
law at early and late life intervals. Some models postulate that a few
different processes take place in the population and affect its mortality
dynamics (Heligman and Pollard, 1980; Thiele, 1872), while others

analyse the impact of population heterogeneity on the dynamics of mor-
tality (Vaupel and Yashin, 1985; Vaupel et al., 1979). A model based on
the assumption that the mortality dynamics is indeed underlined by an
exponential law and deviations from this law are due to the heterogene-
ity of human populations has recently been proposed (Avraam et al.,
2013). It was shown that the observed age-specific mortality patterns
can be reproduced in a model of heterogeneous population consisting
of a few (up to four) subpopulations each following the exponential
law over all ages.

Time evolution of mortality dynamics in human populations is of
great scientific interest and has practical implementations especially
for actuaries,whouse extrapolationmethods toprojectmortality trends
in order to estimate future life expectancy (Booth and Tickle, 2008;
Pitacco, 2004), and to price several longevity products. An example of
mathematical study of this evolution can be found in Gaille (2012),
where the analysis of the evolution of the parameters of two convention-
al models (Heligman–Pollard and Lee–Carter) is used to forecast the
Swiss mortality rates and to study the impact of longevity on Swiss pen-
sion funds. Mathematical analysis of the evolution ofmortality dynamics
could also be useful for demographers (to derive inferences on the pop-
ulation variance) and for biologists (to understand genetics underlying
the evolutionary process of ageing).

In this work we aim to describe the evolution of mortality dynamics
as time evolution of the parameters in the model of a heterogeneous
population (Avraam et al., 2013) so that we could gain insights in the
processes governing mortality reductions over the past century. We in-
troduce our model in Section 2 and used mortality data in Section 3. In
Section 4 we fit the model to various mortality data (cut at a certain
age or including/excluding the extrinsic death factors) for consecutive
periods and analyse the evolution of the model parameters. The results
demonstrate that the population's structure is altered through time and
a relative homogenization of the population occurs, explaining an im-
portant part of mortality reductions during the 20th century. The anal-
ysis also indicates that changes in the initial mortality and mortality
coefficient of the exponential law for all subpopulations are in line
with the compensation law. Discussion of presented results is provided
in Section 5.

2. Mathematical model and fitting procedure

In this work we use a previously proposed model (Avraam et al.,
2013) where a human population is considered as heterogeneous and
composed of a number of subpopulations. The subpopulations are as-
sumed to obey an exponential law, as given by Eq. (1), but differ in
their mortality parameters (initial mortality, m0, and mortality coeffi-
cient, β). Themortality of the entire population ismodelled as amixture
of weighted exponential terms. Theweights represent the relative sizes

Fig. 1.Mortality rates for the Swedish population in the period 1900 (panel A) and 2000 (panel B) presented in a semi-logarithmic scale.
The data are taken from the Human Mortality Database, http://www.mortality.org.
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