
ORIGINAL ARTICLE

Steady-state response of constant coefficient

discrete-time differential systems

Manuel D. Ortigueira *,1, Margarita Rivero 1, Juan J. Trujillo 1

UNINOVA and DEE of Faculdade de Ciências e Tecnologia da UNL1, Campus da FCT da UNL, Quinta da Torre,
2829-516 Caparica, Portugal
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Abstract The problem of steady state output of the discrete-time fractional differential systems is

studied in this paper. Based on the fact that the exponentials are the eigenfunctions of such systems,

a general algorithm for the output computation when the input is the product ‘‘rising factorial.

exponential’’ is presented. The singular case is studied and solved.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The discrete-time differential systems were studied in
Ortigueira et al. (2015) where we developed a framework

parallel to the classic used in continuous-time systems. Those
systems are based on the nabla and delta derivatives (Bohner
and Peterson, 2001; Hilger, 1990; Ortigueira et al., 2015).

Here we resume the study of those systems by considering
the steady state responses to exponentials and products of
exponentials by rising factorial functions. We will study both

the regular and singular cases in a way similar to the one fol-
lowed in Ortigueira (2014b). The algorithm is based on the
concept of eigenfunction. As shown in Ortigueira et al.
(2015) the eigenfunctions of discrete-time differential systems

linear systems are exponentials suitably defined and the
corresponding eigenvalues are the transfer functions. Such
exponentials are defined with the help of the nabla and delta

derivatives and lead to nabla and delta Laplace transforms.
We will consider the regular and singular cases; these corre-
spond to the situation of infinite eigenvalue.

The paper outline is as follows. In Section 2 we present the
nabla and delta derivatives and the corresponding
exponentials. Their properties are listed. In Section 3 we

show how to compute the output when the input is an
exponential or the product of an exponential by a rising
factorial function.

Important remark – The formulation we will present

although in a discrete-time setup it mimics the continuous-time
counterpart. This leads us to use interchangeably t ¼ nh where
h is the underlying time interval.
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2. Fractional nabla and delta derivatives and exponentials

Let t ¼ nh be any generic point in T ¼ hZ ¼ kh : k 2 Zf g. We
define the nabla derivative (Bohner and Peterson, 2001; Hilger,

1990) by:

DrfðtÞ ¼ f 0rðtÞ :¼ fðtÞ � fðt� hÞ
h

ð1Þ

and the delta derivative (Neuman, 1993) by

DDfðtÞ ¼ f 0DðtÞ :¼ fðtþ hÞ � fðtÞ
h

ð2Þ

As it can be seen the first one is causal, while the second is

anti-causal. Their generalizations for any real (or complex)
order are obtained from the continuous-time Grünwald–
Letnikov derivative (Diaz and Osler, 1974; Magin et al.,
2011; Ortigueira, 2011; Ortigueira et al., 2015):

D
ðaÞ
r fðtÞ ¼ f

ðaÞ
r ðtÞ :¼

P1
n¼0 �1ð Þn

a

n

� �
fðt� nhÞ

ha

ð3Þ

and

D
ðaÞ
D fðtÞ ¼ f

ðaÞ
D ðtÞ :¼ e�iap

P1
n¼0 �1ð Þn

a

n

� �
fðtþ nhÞ

ha

ð4Þ

As before (Ortigueira, 2011) we will call these derivatives

respectively forward and backward due to the ‘‘time flow’’,
from past to future or the reverse. This terminology is the
reverse of the one used in some mathematical literature. The
first is causal while the second is anti-causal.

Attending to the fact that �1ð Þn a
n

� �
¼ð�aÞn

n!
where ð�aÞn is the

Pochhammer symbol for the rising factorial –

ðaÞk ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ k� 1Þ2; we conclude immedi-

ately that these derivatives include as special cases the integer
order derivatives and anti-derivatives.

These derivatives enjoy several properties as described in
Ortigueira et al. (2015). The eigenfunctions of these derivatives
are the nabla and delta generalized exponentials defined by

Ortigueira et al. (2015):

erðt; sÞ ¼ 1� sh½ ��t=h ð5Þ

and

eDðt; sÞ ¼ 1þ sh½ �t=h ð6Þ

The properties of these exponentials are described in
Ortigueira et al. (2015).

3. Outputs of differential discrete-time linear systems

3.1. Regular cases

3.1.1. Exponential input

We are going to consider systems with the general format
(Magin et al., 2011)

XN
k¼0

akD
akyðtÞ ¼

XM
k¼0

bkD
bkxðtÞ ð7Þ

with aN ¼ 1. The operator D is the nabla derivative defined

above . The orders N and M are any positive integers. The
ak and bk sequences are strictly increasing and positive real
numbers.

The discrete-time convolution between two discrete-time
functions fðtÞ and gðtÞ is given by:

fðtÞ � gðtÞ ¼ h
Xþ1
k¼�1

fðkhÞgðnh� khÞ ð8Þ

Introduce the discrete delta (impulse) function by:

dðnhÞ ¼ DeðnhÞ ð9Þ

where eðnhÞ is the discrete-time Heaviside unit step

eðnhÞ ¼
1 n P 0

0 n < 0

�
ð10Þ

Let gðtÞ be the impulse response of the system defined by

(7): xðtÞ ¼ dðnhÞ. The output is the convolution of the input
and the impulse response (Ortigueira et al., 2015).

yðtÞ ¼ gðtÞ � xðtÞ ð11Þ

If xðtÞ ¼ erðnh; sÞ the output is given by:

yðtÞ ¼ erðnh; sÞ h
X1
n¼�1

gðnhÞeDðnh;�sÞ
" #

The summation expression will be called transfer function as
usually. We write then

GðsÞ ¼ h
X1
n¼�1

gðnhÞeDðnh;�sÞ ð12Þ

say, the transfer function is the nabla Laplace transform
(Ortigueira et al., 2015) of the impulse response. It is important

to remark that the nabla Laplace transform uses the delta
exponential. There is also the delta Laplace transform (see
Ortigueira et al., 2015). With these results we can easily express

the transfer function as

GðsÞ ¼
PM

k¼0bks
bkPN

k¼0aks
ak

ð13Þ

We conclude that:

� The exponentials are the eigenfunctions of the linear sys-
tems (7)

� The eigenvalues are the transfer function values.

Putting s ¼ 1�eih

h we obtain the usual sinusoidal case. These

results exhibit a high degree of coherence with classic results

(Ortigueira, 2014a).

Example 1. Let h ¼ 1 and consider the differential equation
(Ortigueira, 2014a)

y000ðtÞ þ y00ðtÞ � 4y0ðtÞ þ 2yðtÞ ¼ xðtÞ

Let xðnÞ ¼ 2�n. This corresponds to s ¼ �1. The solution is
given by:

yðnÞ ¼ 1

ð�1Þ3 þ ð�1Þ2 � 8þ 2
2�n ¼ 1

6
2�n

The above result can be generalized.2 We make the convention ð0Þ0 ¼ 1 and ð0Þn ¼ 0 for any integer n
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