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a b s t r a c t

The problem of ‘‘model selection” for expressing a wide range of constitutive behaviour adequately using
hot torsion test data was considered here using a heuristic approach.

A model library including several nested parametric linear and non-linear models was considered and
applied to a set of hot torsion test data for API-X 70 micro-alloyed steel with a range of strain rates and
temperatures. A cost function comprising the modelled hot strength data and that of the measured data
were utilized in a heuristic model selection scheme to identify the optimum models. It was shown that a
non-linear rational model including ten parameters is an optimum model that can accurately express the
multiple regimes of hardening and softening for the entire range of the experiment. The parameters for
the optimum model were estimated and used for determining variations of hot strength of the samples
with deformation.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Accurate hot strength data are required to design or optimise an
industrial hot forming process. The models generated from such
data, also known as constitutive models, are an essential compo-
nent for numerical simulations of the hot forming processes. Such
models are especially useful in conjunction with finite element
analysis in which the model can be easily incorporated and used
to design and optimise processes and product. Parametric repre-
sentation of the hot strength data is also a useful alternative for
the commonly used constitutive models and could be integrated
in mathematical models for the kinetics of (SRX) and dynamic
recrystallization (DRX).

The constitutive behaviour of materials during hot working is
quite complex in nature. It is usually described by either phenom-
enological or empirical/semi-empirical methods. Alternatively,
artificial neural network models can be used to model hot flow
stress of materials.

Phenomenological constitutive equations such as that of Estrin
and Mecking [1] are useful for understanding the underlying the-
ory behind hot deformation. However they need further develop-
ment before they can be applied in industry.

Many empirical/semi-empirical models have been introduced
to represent hot flow behaviour of the materials. Such models usu-
ally have a very limited scope of application. More detailed models

of this type describe time related transformations such as fraction
of transformed microstructure, final texture and mechanical prop-
erties. These models use quantitative relationships between the
microstructural and kinetic parameters and the process variables,
i.e. strain, strain rate, temperature and time (for example see
[2]). Typical example of empirical models is the work by Rao and
Hawbolt [3] and Lin et al. [4] in which they have defined their pri-
mary parameters appearing in a Zener–Hollomon type constitutive
model that are in turn functions of strain using secondary param-
eters. For both models, identification of 9 and 25 parameters,
respectively, are needed to evaluate flow stress from the proposed
constitutive model. However, the predictions made by the models
are not very accurate and even the predictions become worse
when extrapolation is attempted. Kim et al. [5] indicated the short-
comings of using some existing constitutive models. They showed
that the use of these models in conjunction with the results of
compression test and torsion tests could lead to different estima-
tions of hot flow data. Such errors could partially be reduced by
using a better model for the constitutive behaviour.

Artificial Neural Network (ANN) and Integrated Phenomenolog-
ical ANN techniques, used by Kong et al. [6], Narayan et al. [7],
Mandal et al. [8] and Reddy et al. [9], are fundamentally different
in their approach to constitutive modelling and material process-
ing control. The range of input in these models varies from the
product of strain and stress, work hardening coefficient, chemical
composition, temperature, strain rate and initial microstructure.
The models often use hot torsion data (Hodgson et al. [10]) or com-
pression to train their network. The output is usually the flow
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stress. These techniques, however, require a comprehensive data-
base and rule sets for training the network for enabling the result-
ing model to approximate all of the laws of mechanics that the
actual material or process obeys.

On the numerical front, the inverse technique has been used to
identify the parameters of a constitutive model. Khoddam et al.
[11] developed a rigid viscoplastic FE code for parameter estima-
tion of power law and hyperbolic form constitutive equations. Gav-
rus et al. [12] developed a similar FEM code that could identify the
rheological parameters corresponding to a generalized viscoplatic
Norton–Hoff constitutive equation from the results of the hot tor-
sion test.

Although a large number of researchers in constitutive model-
ling have used different techniques to estimate the parameters in
each of above mentioned models, their parameter estimation tech-
niques are bounded by a pre-assumed model. Systematic selection
of the best model for a given material, i.e. the model selection prob-
lem, has not been investigated sufficiently in the existing literature.
The aim of this investigation was to apply a heuristic model selec-
tion approach to identify an adequate mathematical representation
of hot flow behaviour using the hot torsion test data. In order to
substantiate the approach, the hot torsion test results for an API
X70 micro-alloyed steel were used.

2. Heuristic model selection

In statistics literature, the problem of finding the most appro-
priate and concise model to express given data is called the ‘‘model
selection problem” [13]. The solution is a statistical model from a
set of potential models, given data. One needs to determine the
principle behind a series of observations which is often linked di-
rectly to a mathematical model predicting those observations.
Such a ‘‘mathematical model” will be abbreviated in this article
as ‘‘model”.

Once the set of possible models are decided, an analysis is
needed to select the optimum model. The model selection
technique will balance goodness and complexity of the model.
Goodness of the model is generally determined using an approxi-
mation of likelihood ratio, leading to a Chi-squared test. Goodness
of fit and the Chi-squared test are defined for the case of hot flow
data later in this article. The complexity is generally related to the
number of parameters in the model.

Model selection for the hot torque-twist data were carried out
in this work to find the optimum flow stress model.

2.1. Model selection criteria

A combination of visual inspection, use of a quantified factor
and some background considerations were used in this work to
compare the goodness of each model and to exclude inadequate
models from the model library, respectively, and eventually to se-
lect the optimum model.

2.1.1. The goodness of the fit
Given a set of torque-twist data, if data point (Mi, hi) has a mod-

elled value of fi and an average value of M, respectively, for quan-
titative comparison of the models the coefficient of determination
(otherwise known as the R – squared value), may be considered in
which:

R2 ¼ 1�

P
i
ðMi � fiÞ2P

i
ðMi �MÞ2

ð1Þ

The closer this value is to 1, the more accurate the model is
deemed to be to the data.

2.1.2. Background knowledge
The existence of noise in the hot torsion test data, which is usu-

ally of high frequency, is inevitable due to un-wanted deformation
rate changes during deformation at elevated temperature (issues
related to speed control in the test rig), backlashes and clearances
in torque measuring mechanism/chain, vibration of structure and
finally a low ratio of signal to noise. The model should be able to
distinguish between two types of fluctuations in a flow curve
including the change of hardening behaviour and noise in torque
– twist data.

In addition to the above criterion, the following general consid-
erations should be kept in mind:

� Complexity: a bad model may fit the data poorly or needs too
many terms.

� Smoothness: minimum noise type fluctuations are desirable.
� Completeness: the model should have the potential for capturing

all types of high level information such as hardening, softening
and an asymptote end, when a perfectly plastic behaviour is
expected, or a combination of them over the entire range of
deformation.

� Accuracy: the model has to present the accurate location of the
peak stress which is used to predict the onset of dynamic
recrystalization.

� Universality: the model must be capable of providing universally
adequate fits for different shapes of data obtained from the hot
torsion test.

The second type of background information is related to the
competing effects of active hardening and softening mechanisms
during hot deformation of the material. In absence of any softening
mechanism during hot deformation, the material exhibits
monotonic work hardening behaviour during plastic deformation.
In certain conditions, dynamic recovery (DRV) results typically in
monotonic hardening to a steady state plateau, where an equilib-
rium is reached between dislocation generation and annihilation.
During DRX, dislocations are eliminated through replacement of
deformed grains by new grains. This is a typical case for recrystal-
ization of austenitic steel during hot deformation. It generally
consists of a work-hardening peak followed by softening to a
steady-state level.

2.2. Data modelling and model selection

Representing hot strength data by a mathematical model is not
achieved by finding an expression which passes through all mea-
sured data. This is due to the fact that the number of existing data
is much more than the required parameters in the model. Also, a
model should exclude the error component of the measured data
from the real value of the data. It can be assumed the real compo-
nents of the measured data present a datum and the errors are
symmetrically distributed around them. The adjustment process
of parameters for a flow stress model is a problem in minimization
in many dimensions.

A rather more difficult problem is how to be sure that there is
not a much better model in some corner of the model space. In
an attempt to solve this problem a model library was proposed.
Subsequently, for each model in the library, data modelling was
performed. This was followed by a model selection scheme de-
scribed above.

2.3. Merit function for modelling of the hot torsion test data

Given a set of torque-twist data from the test, if data point (Mi,
hi) has its own standard deviation ri, then the vector of model
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