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the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us
to compose a global view of the mechanisms by which the redundancy of the genetic code contributes
to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the struc-
ture and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous

g?é‘:)vgrgs;ge bias (CUB) codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels,
SSNP structure and function without altering amino acid sequence. As such, synonymous mutations inevitably
mRNA structure contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unre-
Translation dynamics solved regarding the impact of silent mutations in human disorders. In the present review we describe
Protein folding developments in this area concentrating on mechanisms by which synonymous mutations may affect

protein function and human health.
Purpose: This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We
review the different steps of gene expression affected by silent mutations, and assess the benefits and
possible harmful effects of codon optimization applied in the development of therapeutic biologics.
Physiological and medical relevance: Understanding mechanisms by which synonymous mutations con-
tribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the
limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants
and future molecular therapies.
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1. Introduction

Half a century ago, following the discovery of the triplet nature
of the genetic code and codon redundancy (Crick, 1955; Crick et al.,
1961), in an article entitled “Molecules and Documents of Evolu-
tionary History”, Emile Zuckerkandl and Linus Pauling predicted:
“Due to isosemantic (synonymous) substitutions, there probably is
more evolutionary history inscribed in the base sequence of nucleic
acids than in the amino-acid sequence of the corresponding polypep-
tide chain” (Zuckerkandl and Pauling, 1965). Today, in light of
the sequencing and analysis of multiple prokaryotic, eukaryotic
(http://www.genome.jp/kegg/catalog/org_list.html), and human
genomes (Venter et al., 2001), our knowledge of the origins and
consequences of codon redundancy is exponentially increasing.
Sequence analysis has identified a discrepancy between the low
number of protein-coding genes and the structural and functional
complexity of the organisms (Claverie, 2001). This observation
directed attention to the contribution of codon redundancy and
non-coding segments of the DNA to the diversity and complex-
ity of species (Shabalina et al., 2004; Shabalina and Spiridonov,
2004; Levine et al.,, 2014). Understanding the molecular mech-
anisms by which individual nucleotides govern the function of
gene products is now a viable experimental objective. Synonymous
mutations leading to an altered phenotype or disease provide excel-
lent models for these types of studies. Although reviews on similar
topics have been published elsewhere (Hunt et al., 2014; Shabalina
et al.,, 2013; Sauna and Kimchi-Sarfaty, 2011), here we concentrate
on the mechanisms by which synonymous mutations alter gene
expression from pre-mRNA processing to cotranslational protein
folding.

2. Historical perspective and terminology

2.1. From DNA structure to codons and the degeneracy of the
genetic code

Elucidating the structure of DNA (Watson and Crick, 1953) led
to identification of the nucleotide triplets that comprise the genetic
code (Crick, 1955; Crick et al., 1961), its universality (Woese, 1965,
1964), discovery of how codons are transcribed into mRNA (Martin
et al., 1962), and the pathways by which mRNA is translated into
a protein (Nirenberg, 1965, 1963). Codons are nucleotide triplets,
comprised of four bases adenine (A), cytosine (C) guanine (G) and
thymine (T). These permit 64 possible codon variations, three of
which represent translation termination signals. The remaining 61
codons encode 20 possible amino acids, resulting in codon redun-
dancy, indicating that multiple codons can encode the same amino
acid. Indeed, 18 of the 20 amino acids are encoded by multiple
codons, and 10 of the amino acids can be charged onto multi-
ple tRNAs, further increasing the degenerate state of the system
(Subramaniam et al., 2013).

2.2. Genomic distribution of synonymous codons, codon usage
bias (CUB)

Beginning with the analysis of E. coli (Ikemura, 1981), and
extending to the genomes of a variety of prokaryotes, eukaryotes,
and multicellular organisms (Ikemura, 1985; Chen et al., 2004;
Duret, 2002b; Duret et al., 2002; Hense et al., 2010; Lucks et al.,
2008; Plotkin et al., 2004), it has become increasingly apparent
that synonymous codon usage is not random and that specific
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