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the mammary gland is a useful model to study fundamental processes of development and adult tis-
sue homeostasis, such as stem and progenitor cell regulation, cell fate commitment, and differentiation.
Long noncoding RNAs (IncRNAs) are emerging as prominent regulators of these essential processes, as
their extraordinary versatility allows them to modulate gene expression via diverse mechanisms at both

{:"cyl{;’\f ;zs'. transcriptional and post-transcriptional levels. Not surprisingly, IncRNAs are also aberrantly expressed
Mammary gland in cancer and promote tumorigenesis by disrupting vital cellular functions, such as cell cycle, survival,
Development and migration. In this review, we first broadly summarize the functions of IncRNAs in mammalian devel-
Differentiation opment and cancer. Then we focus on what is currently known about the role of IncRNAs in mammary
Breast cancer gland development and breast cancer.

This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
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1. Introduction

1.1. LncRNAs and development

A fundamental goal in developmental biology is to understand
how stem and progenitor cells differentiate and perform special-
ized functions in each tissue type of a particular organism. Cells
proceed toward differentiation through highly coordinated, step-
wise changes in gene expression that are largely regulated by
cell-type dependent transcription factor networks, resulting in a
mixed population of stem, progenitor, and differentiated cell types.
The precise regulation of this cellular hierarchy is essential for
creating and maintaining the structure and function of an organ.
Additionally, the preservation of each cell type in a given tissue
requires maintenance of their unique patterns of gene expres-
sion, which is thought to be regulated predominantly by epigenetic
mechanisms. In the past decade, long noncoding RNAs (IncRNAs)
have emerged as significant regulators of tissue- and cell-specific
gene expression by diverse mechanisms, many of which result in
targeted epigenetic modifications. Therefore, it is not surprising
that there is growing evidence of an instructional role for IncRNAs
in mediating key processes in cellular differentiation and develop-
ment (Hu et al., 2011).

Relatively few IncRNAs have identified functions. However,
a large portion of these regulate developmental processes in
embryonic and adult mammalian tissue. Some of the earliest
characterized IncRNAs regulate distinct epigenetic processes that
are critical for embryonic development, such as the regulation
of genomic imprinting by H19 (Bartolomei and Ferguson-Smith,
2011) and X-inactivation by Xist (Jeon et al., 2012). Imprinting and
X-inactivation are both mediated by multiple IncRNA-chromatin
modifying complexes that target and silence genes in cis (Lee and
Bartolomei, 2013). In addition, large-scale analyses using mouse
embryonic stem cells (mESCs) have identified hundreds of IncR-
NAs, some of which are differentially expressed in various stages
of mESC differentiation (Dinger et al., 2008; Guttman et al., 2009).
Loss-of-function studies of dozens of mMESC IncRNAs show that they
act to repress lineage commitment programs to maintain the mESC
pluripotent state (Guttman et al., 2011). Other IncRNAs, such as
Mira, may be induced by, and necessary for, mESC differentiation
(Bertani et al., 2011). Taken together, these data support a central
role for IncRNAs in regulating key processes during embryogenesis,
including genomic imprinting and dosage compensation, as well as
mESC pluripotency and differentiation.

In the adult, IncRNAs often show precise spatiotemporal expres-
sion patterns (Cabili et al., 2011; Derrien et al., 2012; Djebali et al.,
2012; Ravasi et al., 2006), reflecting their potential role in regulat-
ing lineage commitment and differentiation. Consistent with this

proposal, several IncRNAs have been shown to regulate cell fate
decisions across a broad range of tissues. For example, global anal-
yses have identified a large number of IncRNAs that show discrete
patterns of expression in the central nervous system (Mercer et al.,
2008; Ng et al., 2012; Ponjavic et al., 2009; Qureshi et al., 2010).
Further studies have shown that several IncRNAs are required for
proper neural differentiation and development, such as Evf2 (Bond
et al., 2009), Six3os, and DIx1as (Ramos et al., 2013). In addition,
the expression of several IncRNAs is induced during, and necessary
for, the differentiation of distinct hematopoietic lineages, includ-
ing EGO (Wagner et al., 2007), HOTAIRM1 (Zhang et al., 2009),
and LincRNA-EPS (Hu, Yuan, 2011). Another IncRNA called Linc-
MD1 promotes muscle differentiation by binding and sequestering
miRNAs that repress myogenic genes (Cesana et al., 2011). In the
epidermis, ANCR represses terminal differentiation by an unknown
mechanism (Kretz et al., 2012), whereas TINCR promotes terminal
differentiation by binding and stabilizing differentiation mRNAs
(Kretz et al., 2013). LncRNAs have also been shown to regulate
heart development, likely via epigenetic mechanisms. The IncRNA
Bvht interacts with the PRC2 complex and is required for cardiomy-
ocyte differentiation in vitro (Klattenhoff et al., 2013), whereas the
IncRNA Fendrr binds to both the PRC2 and MLL complexes, and it is
essential for proper mouse heart development in vivo (Grote et al.,
2013). Interestingly, recent evidence shows that several imprinted
genes, including the IncRNA H19, are not only expressed embryon-
ically, but are also enriched specifically in adult somatic stem cells
where they may play an additional role in regulating the balance
between stem cell self-renewal and differentiation in several adult
tissues (Berg et al.,, 2011; Ferron et al., 2011; Venkatraman et al.,
2013; Zacharek et al., 2011).

1.2. LncRNAs and cancer

Since IncRNAs regulate critical pathways in tissue development
and maintenance, it might be assumed that the misregulation of
IncRNAs could disrupt these delicate processes and lead to tumori-
genesis. Recent transcriptional profiling of multiple human tissues,
including both normal and tumor samples, have indeed begun to
provide global evidence for the misexpression of IncRNAs in can-
cer (Brunner et al., 2012; Gibb et al., 2011b). These studies have
validated the tissue-specific expression of IncRNAs in normal tis-
sues, and have identified large sets of IncRNAs that are aberrantly
expressed in either a specific cancer or multiple types of cancer. A
recent large-scale study went a step further by integrating microar-
ray data of IncRNA expression from 1,300 tumors, spanning four
types of cancer, with clinical outcome and somatic copy number
alterations (SCNAs) data, and identified 80-300 potential IncRNA
drivers of cancer progression in each of the four cancer types (Du
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