
Phase sensitivity evaluation and its application to phase shifting
interferometry

Shichao Chen, Yizheng Zhu ⇑
The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

a r t i c l e i n f o

Article history:
Received 31 July 2017
Received in revised form 26 December 2017
Accepted 29 December 2017
Available online xxxx

Keywords:
Sensitivity evaluation
Phase shifting interferometry
Shot noise-limited model
Energy efficiency
System optimization

a b s t r a c t

In quantitative phase imaging, sensitivity is a key measure of system reproducibility. Despite continuous
experimental breakthroughs in achieving highly sensitive detection, in-depth studies of theoretical con-
straints on sensitivity are inadequate and comparisons between different techniques are difficult. In this
paper, we introduce the method to evaluate the sensitivity of phase shifting interferometry which is a
major category of quantitative phase imaging techniques. The method discusses in detail several key con-
cepts of sensitivity evaluation, including a general three-level evaluation framework, a complete interfer-
ence signal model, Cramér-Rao bound and algorithm sensitivity, algorithm and system efficiencies, as
well as energy efficiency of an algorithm. In discussions of specific phase shifting algorithms, we focus
on the shot noise-limited model. This simplified model not only reflects the rapid developments in mod-
ern detectors that are often dominated by shot noise, but also permits the calculation of theoretical sen-
sitivities based on measured data, which is important in evaluating experimental performance. As
examples, we study several common phase shifting interferometric techniques. The results of different
techniques are compared to provide insights into algorithm optimization and energy efficiency of sensi-
tivity. A normalized algorithm sensitivity table is also provided for readers to conveniently estimate their
system’s algorithm sensitivity and compare against experiments.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

Phase shifting interferometry (PSI) has been a well-established
category of techniques in the field of optical metrology, sensing
and quantitative phase imaging [1–5]. Despite a variety of imple-
mentations, it is essentially an on-axis interferometric measure-
ment that generates phase shifts while recording interferograms.
By analyzing these interferograms, which are the coherent addi-
tions of the optical fields from the test arm and reference arm of
an interferometer, optical pathlength (OPL) difference between
them can be obtained and can be further interpreted for various
applications.

The accuracy of the retrieved OPL value is affected by
systematic errors, which are consistent throughout a series of
measurements. Its precision, on the other hand, is affected by
non-repeatable fluctuations, whose standard deviation is typically
defined as measurement sensitivity. This fluctuation is a result of
various noise sources, including detector noises, light source
fluctuation, environmental vibration and the stochastic behavior
of phase/wavelength shifting devices. Temporal sensitivity

characterizes the temporal non-repeatability at a fixed location
and spatial sensitivity characterizes the spatial non-uniformity
within a region. In PSI, modulation and demodulation are mainly
performed on a pixel basis, hence temporal sensitivity is of greater
interest. Unless otherwise specified, sensitivity in this paper stands
for the temporal sensitivity. A smaller value means the system can
perform more stable measurements and is therefore more sensi-
tive to minute OPL changes in the sample.

Sensitivity evaluation allows one to understand and quantify
how well a system performs in terms of its measurement capabil-
ity. Does it provide the best accuracy it is capable of? How much, if
any, of the experimental sensitivity is contributed by environmen-
tal or hardware instabilities? How can one improve the system
and/or algorithm to achieve the same sensitivity with lower light
exposure of the specimen? This last question is of particular inter-
est to live cell imaging, where efforts to minimize light damage are
always appreciated. Sensitivity measured from actual acquisitions
is the familiar experimental sensitivity (EXP). More importantly, in
order to conduct a complete sensitivity evaluation, we should also
consider the corresponding theoretical constraints as well as algo-
rithm and system efficiencies. These concepts will be discussed in
detail in the next section. Analyses of theoretical sensitivities
require proper statistical modelling of the noise behaviours in
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the signals. The earliest works, such as those studying Cramér-Rao
bound sensitivity (CRB) as the fundamental sensitivity limit [6–9],
and those studying algorithm sensitivity (ALG) [10–12], all assume
a uniform Gaussian noise distribution. However, advances in
modern camera and detector technology have been pushing their
operation into the shot noise-limited regime, which differs sub-
stantially from uniform Gaussian noise. Since shot noise depends
directly on signal intensity, it permits the characterization of noise
entirely frommeasured data. Therefore, it calls for a reexamination
of the sensitivity theory in optical interferometry.

Our recent work has demonstrated a three-level sensitivity
evaluation framework using a wavelength shifting interferometry
(WSI) technique as an example [13]. In that paper, EXP has shown
excellent agreement with the shot noise-limited ALG calculated
from measured interference intensity. Compared to WSI, PSI has
substantially more variations in implementations. Different
number and value of phase steps lead to different modulation
techniques. Even for the same modulation, there can exist various
demodulation algorithms. Comparisons are thus needed not only
vertically to examine algorithm efficiency and system efficiency,
but also horizontally to compare different techniques, algorithms,
and systems. In this paper, we introduce a general framework of
sensitivity evaluation and its key concepts. We then focus on the
shot noise-limited CRB and ALG for PSI techniques and propose
an energy normalization scheme for their sensitivities to enable a
fair comparison. Meanwhile, the shot noise-limited model is
shown to lead to discrepancies between CRB and ALG for
some techniques, which have not been observed with Gaussian
noise model. These findings suggest possibilities of algorithm
improvements.

The paper is outlined as follows. In Section 2, general formulae
of CRB and ALG, and in particular their shot noise-limited case, will
be derived using the general form of PSI signals. We will then ana-
lyze and compare several common techniques and algorithms in
Section 3. A convenient normalized ALG lookup table will be pro-
vided for readers to estimate their system’s potential ALG and
compare against EXP. Finally, we will summarize our results and
their implications.

2. Method

Proper modelling of signal and noise statistics is the prerequi-
site to perform sensitivity evaluation. We will start with a
complete signal model, discuss its Gaussian and Poisson approxi-
mations, and then focus on its shot noise limited form. The meth-
ods to evaluate all three level sensitivities and related indices are
introduced subsequently.

2.1. The complete signal model

The noise-free (average) PSI intensity at each phase step can be
written as:

In ¼ a 1þ V cosðk0LþunÞ½ � ¼ aþ b cosðk0LþunÞ;n ¼ 1 � N; ð1Þ
where the DC term, a, represents the combined intensity of the
sample and reference arms, and b is the amplitude of the interfer-
ence term with k0L (k0: wavenumber; L: OPL) as the initial phase
and U ¼ u1;u2; . . .un½ � as the additional phase shift for the n
frames. The intermediate step containing the visibility V ¼ b=a (also
known as normalized contrast or modulation depth) is another typ-
ical representation. For the ease of derivation in this section, we will
use the last representation with an unknown parameter set of
X ¼ ½x1;x2;x3� ¼ ½a; b; L�.

The noise-free In is the ideal case. For actual acquisitions, we use
In to specify the measured, noise-corrupted intensity readout. In

cameras or photo-detectors, this direct readout is a value in
analog-to-digital unit (ADU). The actual number of photo-
electrons x ¼ ½x1; . . . ; xN� collected by the detector can be expressed
as xn ¼ gIn, where g is the camera gain. In general, we can express
the n-th observation as

xn ¼ sn þ dn þ rn: ð2Þ
In this expression sn is the number of photo-generated electrons

representing the interference signal with shot noise. It follows
Poisson distribution with mean value of g�In and expressed as
Poðsn; g�InÞ. Dark noise dn, representing the number of thermally
generated electrons (dark current), and readout noise rn, represent-
ing readout electron fluctuations, are also two common well
understood noises. We assume uniform dark current and readout
noise for all sampling points. Hence dn follows Poisson distribution
Poðdn; g�IdÞ with �Id being the dark current intensity in ADU, and the
readout noise rn is modeled as a zero-mean Gaussian distribution
with r2

r as its variance, expressed as Nðrn;0;r2
r Þ [14,15].

2.2. Gaussian and Poisson approximations

The complete model is a sum of Gaussian and Poisson random
variables, presenting difficulties in further derivation. Two
approaches may be used to approximate the model. The first one
approximates sn and dn as Gaussian variables, so that the sum xn
follows a Gaussian distribution. Alternatively, we can approximate
Gaussian RV rn as a Poisson distribution so that xn, sum of all
Poisson random variables, can still be treated as Poisson.

In the Gaussian approximation approach, the approximations
can be made on sn and dn to convert the whole model to be
entirely Gaussian. Here we use a Gaussian distribution Nðx;l;lÞ
to approximate a Poisson distribution Poðx;lÞ. Therefore, sn and
dn can be approximated as Gaussian random variables following
Nðsn; g�In; g�InÞ and Nðdn; g�Id; g�IdÞ respectively. In most cases, when
g�In and g�Id are not too small, this type of approximation is highly
accurate. With all three components being Gaussian, xn thus
becomes a Gaussian random variable as well. The complete inter-
ference signal model follows N xn;ln � r2

r ;ln

� �
with a mean value

of ln ¼ g�In þ g�Id þ r2
r .

The Poisson approximation, on the other hand, will convert the
only exception, rn, which has a Gaussian distribution Nðrn;0;r2

r Þ, to
Poisson distribution. Practically, a Gaussian distribution Nðx;l;lÞ
can be very well approximated as a Poisson distribution Poðx;lÞ
when l is not too small. Therefore, a shifted read noise rn þ r2

r ,
which follows Nðrn;r2

r ;r2
r Þ, can be considered to be Poðrn;r2

r Þ. Add-
ing r2

r to both sides of Eq. (2) leads to a shifted complete model,

x0n ¼ xn þ r2
r ¼ sn þ dn þ ðrn þ r2

r Þ; ð3Þ
which becomes the sum of three independent Poisson random vari-
ables. The shifted complete model now follows Poisson distribution
Poðx0n;lnÞ, with its rate being the combined rate of all three compo-
nents, i.e. ln ¼ g�In þ g�Id þ r2

r .

2.3. Shot noise-limited model

In the complete model or either one of its approximations listed
above, shot noise component is directly determined by the noise-
free interference intensity but dark noise and read noise of the
detectors require additional experimental characterizations. Fortu-
nately, with the advances in modern photo-detectors, shot noise
has almost always been the dominated term and hence we can
neglect the two additional terms in the complete model.

The shot noise-limited model is consistent with the Poisson
approximation except for saving the need of a shifted signal. Each
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