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a b s t r a c t

The stability and bifurcation analysis for a predator–prey system with the nonlinear
Michaelis–Menten type predator harvesting are taken into account. The existence
and stability of possible equilibria are investigated. Specially, the stability of some
positive equilibria is determined by using numerical simulation method due to the
fact that the expressions of determinant and trace of the Jacobian matrix at these
equilibria are very complex. The rigorous mathematical proofs of the existence
of saddle–node bifurcation and transcritical bifurcation are derived with the help
of Sotomayor’s theorem. Furthermore, in order to determine the stability of limit
cycle of Hopf bifurcation, the first Lyapunov number is calculated and a numerical
example is given to illustrate graphically. Choosing two parameters of the system
as bifurcation parameters, we prove that the system exhibits Bogdanov–Takens
bifurcation of codimension 2 by calculating a universal unfolding near the cusp.
Numerical simulations are carried out to demonstrate the validity of theoretical
results. Our research will be useful for understanding the dynamic complexity of
ecosystems or physical systems when there is the nonlinear Michaelis–Menten type
harvesting effect on predator population. This kind of nonlinear harvesting is more
realistic and reasonable than the model with constant-yield harvesting and constant-
effort harvesting. It can be thought as a supplement to existing literature on the
dynamics of this system, since there is little literature involved in nonlinear type
harvesting for the system up to now.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the pioneering work of Lotka and Volterra who first proposed two differential equations that
describe the relationship between predators and prey in 1925 and 1926, respectively [1], predators and
prey models have been continuously researched over the last one hundred years due to its significance in
many problems [2–4]. From the point of view of human needs, the exploitation of biological resources,
the management of renewable resources, and the harvesting of populations are commonly human purpose
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of achieving the economic interest in fishery, forestry, and wildlife management [5,6]. Hence, this is
the motivation to introduce and to consider the harvesting of populations in predator–prey models.
Predator–prey models with harvesting and the role of harvesting in the management of renewable resources
are studied extensively by many authors [7–12]. In 1979, May et al. [13] have proposed two types of harvesting
regimes: (i) constant-yield harvesting, which is described as harvested biomass independent of the size of the
population, and (ii) constant-effort harvesting, i.e., proportional harvesting, which is described as harvested
biomass proportional to the size of the population.

In terms of predator–prey systems with constant-yield harvesting, Huang et al. [14] systematically studied
the dynamical properties of a predator–prey model of Holling and Leslie type with nonzero constant-
yield prey harvesting. They have shown that the harvested model can exhibit richer dynamics compared
to the model with no harvesting, such as appearance of numerous kinds of bifurcations for the model,
including saddle–node bifurcation, Hopf bifurcation, repelling and attracting Bogdanov–Takens bifurcations
of codimensions 2 and 3. Sen et al. [7] focused on the global dynamics of a predator–prey system when
predator is provided with additional food as well as harvested at a constant rate. Refs. [15,16] also have paid
great attention to study the effect of constant-yield harvesting in predator–prey models.

In terms of constant-effort harvesting, a ratio-dependent predator–prey model in which the prey is
continuously being harvested at a linear function rate was studied by Xiao et al. [17]. They proved that the
system has different behaviors for various parameter values. Particularly, there exist areas of coexistence
in which both populations become extinct, and areas of “conditional coexistence” depending on the initial
values. Makinde [18] developed an algorithm to approach the solution of the ratio-dependent predator–prey
system with constant effort harvesting. In addition to these work mentioned above, the effect of constant-
effort harvesting in predator–prey models has been studied in [19,20], and the reference therein as well.

However, it is well-known that nonlinear type harvesting is more realistic from biological and economic
points of view [21] and is better than the constant-yield harvesting and constant-effort harvesting [22,23].
There are two main reasons. On the one hand, harvesting does not always occur with constant yield or
constant effort [6]. On the other hand, constant-effort harvesting embodies several unrealistic features
and limitations. Traditionally, the constant effort catch-rate function is taken into account in the form
h(E, x) = qEx based on the catch-per-unit-effort hypothesis, where E denotes effort and c is a constant. We
can see that h tends to infinity as the effort E tends to infinity if the population x is finite and fixed, or as
the population x tends to infinity if the effort E is finite and fixed [24]. The harvesting term h(E, x) = qEx

cE+lx
proposed firstly by Clark [25] is the so-called Michaelis–Menten type functional form of catch rate, where q
is the catchability coefficient, E is the external effort devoted to harvesting, c and l are constants. Now we
have limE→∞ h(E, x) = q

cx, and limx→∞ h(E, x) = q
lE [26,27]. Hence, these restrictive features which we

have mentioned-above are largely removed. For more details about this kind of harvesting type one can see
Ref. [27]. A modified Leslie–Gower predator–prey model with time delay and the Michaelis–Menten type prey
harvesting was investigated by Yuan et al. [28]. They obtained the critical conditions for the saddle–node-
Hopf bifurcation, and gave the completion bifurcation set by calculating a universal unfolding near the
saddle–node-Hopf bifurcation point. In [29], Zhang et al. discussed a reaction–diffusion predator–prey model
with non-local delay and Michaelis–Menten-type prey-harvesting. They revealed that the discrete and non-
local delays are responsible for a stability switch in the model system, and a Hopf bifurcation occurs as the
delays pass through a critical value.

May et al. [13] proposed the following model to describe the interaction of predators and their prey
subjected to various harvesting regimes:ẋ = r1x
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