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a b s t r a c t

In this paper, we consider the full compressible Navier–Stokes equations inN(N ≥ 2)
space dimension with cylindrical or spherical symmetric initial data. The global
existence of strong and classical solutions is established. The analysis is based on
some delicate a priori estimates which depend on the assumption κ(θ) = θq where
q > 0 and (ρ0, θ0) ∈ H2, (u0, v0, w0) ∈ H1

0 ∩ H
2. Compared with the results in

Wen and Zhu (2014) and Qin, Yang, Yao and Zhou (2015), our results relax the
restriction q > 0, when there is no initial vacuum and include the global existence of
classical solutions for both the cylindrical or spherical symmetric cases, respectively.
It should point out that we obtain the global classical solutions with the help of
weighted H3 estimates of (u, v, w, θ).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the full compressible Navier–Stokes equations, which describe the motion of viscous,
heat-conducting gas can be written in Eulerian coordinates in Ω ⊂ RN as follows:

ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇P = div(T ),
(ρE)t + div(ρuE) + div(Pu) = div(T u) + div(κ∇θ),

(1.1)

here T is the stress tensor given by

T = µ(∇u + (∇u)′) + λdivuIN ,

where IN is an N × N unit matrix; ρ = ρ(x, t),u = u(x, t) = (u1, . . . , uN )(x, t) and θ = θ(x, t) denote
the density, velocity and absolute temperature, respectively; P = P (ρ, θ), E = e + 1

2 |u|
2, e(ρ, θ) and κ
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are pressure, total energy, internal energy and heat conductivity coefficient, respectively. The viscosity
coefficients µ and λ satisfy the following physical restrictions:

µ > 0, 2µ+Nλ > 0;

P and e satisfy the second principle of thermodynamics:

P = ρ2 ∂e
∂ρ

+ θ∂P
∂θ
.

The well-posedness theory of the full compressible
Navier–Stokes equations (1.1) has been extensively studied with a lot of references. In the absence of

vacuum (i.e. inf ρ0 > 0), the local existence of classical solutions to three dimensional system (1.1) in Hölder
spaces was obtained by Itaya [1] for Cauchy problem and by Tani [2] for initial boundary value problem,
respectively. Matsumura and Nishida [3,4] proved the global existence of classical solutions in three space
dimension, when the initial perturbation is small. Kazhikhov and Shelukhi [5] (for polytropic perfect gas
with µ, λ, κ = const.) and Kawohl [6] (for real gas with κ = κ(ρ, θ), µ, λ = const.) got the global classical
solutions to one-dimensional system in Lagrangian coordinates. In [6], the heat conductivity coefficient
κ(ρ, θ) satisfies the assumption

κ0(1 + θq) 6 κ(ρ, θ) 6 κ1(1 + θq), q > 2 + 2r, r ∈ [0, 1],

where κ0, κ1 are positive constants. For the polytropic ideal gas, Jiang [7] got spherically symmetric classical
large solutions in an exterior domain. On the existence, asymptotic behavior of the weak solutions, we can
refer to [8–10] for the existence of weak solutions in 1D and for the existence of spherically symmetric weak
solutions in RN (N = 2, 3), and refer to [11] for the existence of spherically or cylindrically symmetric weak
solutions, and [12] for the existence of variational solutions in a bounded domain in RN (N = 2, 3). Recently,
for the ideal gas, Qin, Yang, Yao and Zhou [13] studied the global well-posedness for large initial data and
the vanishing shear viscosity limit with a boundary layer to the compressible Navier–Stokes system with
cylindrical symmetry under a general condition on the heat conductivity coefficient, which included the
constant case.

In the presence of vacuum (i.e. ρ may vanish), the related results about the well-posedness to (1.1)
are few, we can refer to [14] for the global existence of weak solutions in T3 or R3 with special pressure,
viscosity and heat conductivity, and [15] for the existence of variational solutions in dimension N ≥ 2.
It is worth mentioning that Cho and Kim [16] (for the perfect gas with µ, λ, κ = const.) obtained the
existence and uniqueness of local strong solutions for N = 3. Next, Wen and Zhu [17] got the existence
and uniqueness of global strong and classical solutions in one dimension with large initial data, in which,
they made the assumption: κ(θ) = O(1 + θq), q > 2 + 2r, r > 0. Recently, under the assumption
κ(θ) = O(1 + θq), q > r, r > 0, Wen and Zhu [18] obtained the existence and uniqueness of global
cylindrical or spherical symmetric classical solutions.

For compressible isentropic Navier–Stokes equations (i.e. no temperature equation in (1.1)), there
are many results about the existence and large time behavior of the global smooth(weak) solutions to
compressible Navier–Stokes equations with density dependent viscosity or constant viscosity and with or
without vacuum, refer to [19–28] and references cited therein.

In this paper, we will consider the full compressible Navier–Stokes equations (1.1) with cylindrical or
spherical symmetric initial data, and prove the global existence of strong and classical solutions without
initial vacuum. There are two main theorems in this paper. In Theorem 2.1, we get the global existence of
strong solutions. In Theorem 2.2, we get further regularity of solutions for the same regular initial data and
get the global classical solutions. Compared with [18], there are two differences. On the one hand, for the
heat conductivity coefficient κ(θ) = θq where q > 0, it relaxes the condition q > r (r ≥ 0) in [18]; on the
other hand, in order to avoid making the assumption about the higher regularity for the initial data, we make
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