Global weak solutions for the two-dimensional magnetohydrodynamic equations with partial dissipation and diffusion

Dipendra Regmi
Farmingdale State College, State University of New York, Farmingdale, NY 11735, United States

A R T I C L E I N F O

Article history:
Received 29 January 2016
Accepted 2 July 2016
Communicated by Enzo Mitidieri
MSC:
35A01
35B45
35B65
76D03
76D09
Keywords:
MHD equations
Partial dissipation
Vertical diffusion
Weak solutions
Classical solutions
Global regularity

Abstract

In this paper, we consider the two-dimensional magnetohydrodynamic equations. We establish global weak solution for MHD equations with partial dissipation and vertical diffusion. We also obtain a regularity condition.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The viscous incompressible magnetohydrodynamic equations can be written as

$$
\left\{\begin{array}{l}
u_{t}+u \cdot \nabla u=-\nabla p+\nu_{1} \partial_{x x} u+\nu_{2} \partial_{y y} u+b \cdot \nabla b \tag{1.1}\\
b_{t}+u \cdot \nabla b=\eta_{1} \partial_{x x} b+\eta_{2} \partial_{y y} b+b \cdot \nabla u \\
\nabla \cdot u=0, \quad \nabla \cdot b=0 \\
u(x, y, 0)=u_{0}(x, y), b(x, y, 0)=b_{0}(x, y)
\end{array}\right.
$$

where $(x, y) \in \mathbb{R}^{2}, t \geq 0, u=\left(u_{1}(x, y, t), u_{2}(x, y, t)\right)$ denotes the 2 D velocity field, $p=p(x, y, t)$ the pressure, $b=\left(b_{1}(x, y, t), b_{2}(x, y, t)\right)$ the magnetic field, and $\nu_{1}, \nu_{2}, \eta_{1}$ and η_{2} are nonnegative real parameters. When $\nu_{1}=\nu_{2}$ and $\eta_{1}=\eta_{2}$, (1.1) reduces to the standard incompressible MHD equations.

[^0]When all four parameters $\nu_{1}, \nu_{2}, \eta_{1}$ and η_{2} are positive, the global regularity of 2D MHD equations is well known [13]. However, it remains a remarkable open problem whether classical solutions of the twodimensional inviscid MHD equation, all four parameters are zero, preserve their regularity for all time or finite time blowup. When $\nu_{1}>0, \nu_{2}=0, \eta_{1}=0$ and $\eta_{2}>0$ or when $\nu_{1}=0, \nu_{2}>0, \eta_{1}>0$ and $\eta_{2}=0$, the global regularity was established by Cao and Wu [2]. Furthermore, the MHD equations with only magnetic diffusion is shown to possess global weak solutions [2]. Cao, Regmi, and Wu studied two dimensional MHD equations with horizontal dissipation and horizontal diffusion in [1]. They proved that any possible blow-up can be controlled by the L^{∞} norm of the horizontal components. Furthermore, they showed that $\|v\|_{L^{r}}$ with $2<r<\infty$ at any time does not grow faster than $\sqrt{r \log r}$ as r increases i.e. $\left\|\left(u_{1}, b_{1}\right)\right\|_{L^{r}} \leq C \sqrt{r \log r}$. The MHD equations have been a center of attention to numerous analytical, experimental, and numerical investigations (see [1,2,4-20], and references therein).

In this paper, we consider the MHD equations with partial dissipation in the first component of velocity field and vertical magnetic diffusion.

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}+u \cdot \nabla u_{1}=-\partial_{x} p+\nu_{2} \partial_{y y} u_{1}+b \cdot \nabla b_{1} \tag{1.2}\\
\partial_{t} u_{2}+u \cdot \nabla u_{2}=-\partial_{y} p+b \cdot \nabla b_{2} \\
\partial_{t} b+u \cdot \nabla b=\eta_{1} \partial_{x x} b+b \cdot \nabla u, \\
\nabla \cdot u=0, \quad \nabla \cdot b=0, \\
u(x, y, 0)=u_{0}(x, y), \quad b(x, y, 0)=b_{0}(x, y)
\end{array}\right.
$$

where ν_{2} and η_{1} are positive parameters, we assume $\nu_{2}=\eta_{1}=1$ for simplicity.
The vorticity $\omega=\nabla \times u$ and the current density $j=\nabla \times b$ satisfy

$$
\left\{\begin{array}{l}
\omega_{t}+u \cdot \nabla \omega=-\partial_{y y y} u_{1}+b \cdot \nabla j, \tag{1.3}\\
j_{t}+u \cdot \nabla j=\partial_{x x} j+b \cdot \nabla \omega+2 \partial_{x} b_{1}\left(\partial_{x} u_{2}+\partial_{y} u_{1}\right)-2 \partial_{x} u_{1}\left(\partial_{x} b_{2}+\partial_{y} b_{1}\right) .
\end{array}\right.
$$

We prove the following theorem.
Theorem 1.1. Assume that $\left(u_{0}, b_{0}\right) \in H^{1}\left(\mathbb{R}^{2}\right), \nabla \cdot u_{0}=0$ and $\nabla \cdot b_{0}=0$. Then, (1.2) has a global weak solution (u, b), which satisfies

$$
u, b \in L^{\infty}\left([0, T) ; H^{1}\left(\mathbb{R}^{2}\right)\right), \quad \partial_{y y} u \in L^{2}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right), \quad \partial_{x} j \in L^{2}\left([0, T] ; L^{2}\left(\mathbb{R}^{2}\right)\right)
$$

for any $T>0$.
It is not known if such weak solutions are globally regular. However, if the u_{2} satisfies

$$
\int_{0}^{T}\left\|\partial_{x x} u_{2}\right\|_{4}<\infty
$$

then the solution becomes a classical solution.
Remark 1.2. - This work is motivated by the recent work in [4,2,1].

- Similar results can be obtained, if we replace $\partial_{y y} u_{1}$ by $\partial_{x x} u_{2}$ and $\partial_{x x} b$ by $\partial_{y y} b$ in (1.2).

This paper is organized as follows: we first state some preliminaries and some important lemmas in Section 2 and thereafter in Sections 3 and 4 we prove our main results.

2. Preliminary

Throughout this paper, we use the following notations.

$$
\|f\|_{L^{2}}=\|f\|_{2}, \quad \frac{\partial}{\partial x} f=\partial_{x} f=f_{x x}, \quad \frac{\partial^{2}}{\partial x^{2}} f=\partial_{x x} f, \quad \int_{\mathbb{R}^{2}} f d x d y=\int f
$$

We state some lemmas which play an important role.

https://daneshyari.com/en/article/839177

Download Persian Version:
https://daneshyari.com/article/839177

Daneshyari.com

[^0]: E-mail address: regmid@farmingdale.edu.

