A note on an inequality of Bourgain and Brezis

Zhibing Zhang
Department of Mathematics, East China Normal University, Shanghai 200241, PR China

H I G H L I G H T S

- A new and elementary proof to an inequality of Bourgain and Brezis is given.
- Avoid using the Littlewood-Paley decomposition.
- An equivalent version of the inequality is given.

A R T I C L E I N F O

Article history:

Received 10 September 2015
Accepted 30 November 2015
Communicated by Enzo Mitidieri

$M S C$:

26D15
46E35
Keywords:
Divergence-free
Gaffney-type inequality
L^{1} vector fields

Abstract

In this note, we give a new and elementary approach to an inequality of Bourgain and Brezis (2007) for L^{1} vector fields, avoid using the Littlewood-Paley decomposition that Bourgain and Brezis used. And we also give an equivalent version of the inequality.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inspired by pioneering work [1], many interesting results that involve L^{1}-data have been established. Bourgain and Brezis $[2,3]$ proved the following theorem. Their proof is quite involved, relying on a Littlewood-Paley decomposition.

Theorem 1. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, $\operatorname{div} \mathbf{f}=0$ and $\mathbf{u} \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u} \mathrm{~d} x\right| \leq C\|\mathbf{f}\|_{L^{1}}\|\nabla \mathbf{u}\|_{L^{n}} \tag{1.1}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.na.2015.11.027
0362-546X/© 2015 Elsevier Ltd. All rights reserved.

This theorem has many important applications, see [2,3,11,12,7] for example. Van Schaftingen [10] gave a direct and elementary proof of the above theorem, which uses only the Morrey-Sobolev embedding, and got a slightly more general version. Actually, the proof supplies a slightly stronger result where $\|\nabla \mathbf{u}\|_{L^{n}}$ can be replaced by $\sum_{i \neq j}\left\|\frac{\partial u_{i}}{\partial x_{j}}\right\|_{L^{n}}$, see [10, Remark 3].

Theorem 2. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, $\operatorname{div} \mathbf{f} \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\mathbf{u} \in\left(W^{1, n} \cap L^{\infty}\right)\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u d} x\right| \leq C\left(\|\mathbf{f}\|_{L^{1}} \sum_{i \neq j}\left\|\frac{\partial u_{i}}{\partial x_{j}}\right\|_{L^{n}}+\|\operatorname{div} \mathbf{f}\|_{L^{1}}\|\mathbf{u}\|_{L^{n}}\right) .
$$

For divergence-free L^{1} vector fields, the above theorem becomes
Theorem 3. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right), \operatorname{div} \mathbf{f}=0$ and $\mathbf{u} \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u d} x\right| \leq C\|\mathbf{f}\|_{L^{1}} \sum_{i \neq j}\left\|\frac{\partial u_{i}}{\partial x_{j}}\right\|_{L^{n}}
$$

Bourgain and Brezis [3] obtained another slightly sharper version of Theorem 1, which is also stronger than Theorem 3.

Theorem 4. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, $\operatorname{div} \mathbf{f}=0$ and $\mathbf{u} \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u d} x\right| \leq C\|\mathbf{f}\|_{L^{1}}\|\operatorname{CURL} \mathbf{u}\|_{L^{n}} .
$$

The original proof of the above theorem in [3] also relies on the Littlewood-Paley decomposition. In fact, with the help of the Gaffney-type inequality and Theorem 1, we find a new approach to prove Theorem 4. Since the elementary proof of Theorem 1 given by Van Schaftingen does not need the Littlewood-Paley decomposition, our method can also avoid using the Littlewood-Paley decomposition. Our new proof will be given in Section 2.

Now we state an equivalent version of Theorem 4.
Theorem 5. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right), \nabla(-\Delta)^{-1} \operatorname{div} \mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ and $\mathbf{u} \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u d} x\right| \leq C\left(\|\mathbf{f}\|_{L^{1}}\|\operatorname{CURL} \mathbf{u}\|_{L^{n}}+\left\|\nabla(-\Delta)^{-1} \operatorname{div} \mathbf{f}\right\|_{L^{1}}\|\nabla \mathbf{u}\|_{L^{n}}\right) \tag{1.2}
\end{equation*}
$$

By a similar way, we can also get a result equivalent to Theorem 1.
Theorem 6. Let $n \geq 2$. If $\mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right), \nabla(-\Delta)^{-1} \operatorname{div} \mathbf{f} \in L^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ and $\mathbf{u} \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, then there exists a constant $C>0$, independent of \mathbf{f} and \mathbf{u}, such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \mathbf{f} \cdot \mathbf{u d} x\right| \leq C\left(\|\mathbf{f}\|_{L^{1}}+\left\|\nabla(-\Delta)^{-1} \operatorname{div} \mathbf{f}\right\|_{L^{1}}\right)\|\nabla \mathbf{u}\|_{L^{n}} \tag{1.3}
\end{equation*}
$$

Remark 7. By Theorem 6 and standard elliptic estimates, we can see that [6, Proposition 1] still holds for $q=n^{\prime}$, where $n^{\prime}=\frac{n}{n-1}$.

https://daneshyari.com/en/article/839331

Download Persian Version:

https://daneshyari.com/article/839331

Daneshyari.com

[^0]: E-mail address: zhibingzhang29@126.com.

