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Furthermore, a numerical algorithm and some numerical 
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a b s t r a c t

This paper deals with the existence and the asymptotic behavior of non-negative
solutions for a class of stationary Kirchhoff problems driven by a fractional integro-
differential operator LK and involving a critical nonlinearity. In particular, we
consider the problem

−M(||u||2)LKu = λf(x, u) + |u|2
∗
s−2
u in Ω , u = 0 in Rn \ Ω ,

where Ω ⊂ Rn is a bounded domain, 2∗s is the critical exponent of the fractional
Sobolev space Hs(Rn), the function f is a subcritical term and λ is a positive
parameter. The main feature, as well as the main difficulty, of the analysis is the
fact that the Kirchhoff function M could be zero at zero, that is the problem is
degenerate. The adopted techniques are variational and the main theorems extend
in several directions previous results recently appeared in the literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, the interest towards nonlinear boundary value stationary Kirchhoff problems has grown
more and more, thanks in particular to their intriguing analytical structure due to the presence of the
nonlocal Kirchhoff function M which makes the equation no longer a pointwise identity. In the present
paper we consider the problem

−M

∥u∥2

LKu = λf(x, u) + |u|2

∗
s−2
u in Ω ,
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u = 0 in Rn \ Ω , (1.1)

∥u∥2 =


R2n
|u(x)− u(y)|2K(x− y)dxdy,

where Ω ⊂ Rn is a bounded domain, n > 2s, with s ∈ (0, 1), the number 2∗s = 2n/(n − 2s) is the critical
exponent of the fractional Sobolev space Hs(Rn), the function f is a subcritical term and λ is a positive
parameter.

The main nonlocal fractional operator LK is defined for any x ∈ Rn by

LKϕ(x) = 1
2


Rn

(ϕ(x+ y) + ϕ(x− y)− 2ϕ(x))K(y)dy, (1.2)

along any ϕ ∈ C∞0 (Ω) and the kernel K : Rn \ {0} → R+ is a measurable function for which

(K1) mK ∈ L1(Rn) with m(x) = min

|x|2 , 1


;

(K2) there exists θ > 0 such that K(x) ≥ θ |x|−(n+2s) for any x ∈ Rn \ {0};

hold.
A typical example of K is given by K(x) = |x|−(n+2s). In this case the operator LK = −(−∆)s reduces

to the fractional Laplacian, which (up to normalization factors) may be defined for any x ∈ Rn as

(−∆)sϕ(x) = 1
2


Rn

2ϕ(x)− ϕ(x+ y)− ϕ(x− y)
|y|n+2s dy

along any ϕ ∈ C∞0 (Ω); see [13,20,21,32,33] and references therein for further details on the fractional Laplace
operator (−∆)s and the fractional Sobolev spaces Hs(Rn) and Hs0(Ω).

Several recent papers are focused both on theoretical aspects and applications related to nonlocal
fractional models. Concerning the critical case, in [5] the effects of lower order perturbations are studied for
the existence of positive solutions of critical elliptic problems involving the spectral fractional Laplacian and
not via formula (1.2). In [6], see also the references therein, existence and multiplicity results are established
for a critical fractional equation with concave–convex nonlinearities. In [31] a Brézis–Nirenberg existence
result for nonlocal fractional equations is proved through variational methods, while in [30] the authors
extend the theorems obtained in [31] to a more general problem, again involving an integro-differential
nonlocal operator and critical terms. Furthermore, a multiplicity result for a Brézis–Nirenberg problem in
nonlocal fractional setting is given in [17], where it is shown that in a suitable left neighborhood of any
eigenvalue of LK (with Dirichlet boundary data) the number of solutions is at least twice the multiplicity of
the eigenvalue. For multiplicity results on a non-degenerate stationary Kirchhoff problem involving LK and
a nonlinearity of integral form we refer to [23] and the references therein.

For evolutionary Kirchhoff problems it is worth mentioning the paper [2], which is concerned with lifespan
estimates of maximal solutions for degenerate polyharmonic Kirchhoff problems. The technique goes back
to [28] and it is based on the construction of a Lyapunov function Z which lives as long as any local solution
u does. The goal is to show that Z becomes unbounded in finite time, proving the non-continuation of u.
A priori estimates for the maximal living time T are obtained exploiting in a suitable way the non-existence
tools already adopted in [4] for possibly degenerate p(x)-Kirchhoff systems involving nonlinear damping and
source terms. More recently, in [12] a multiplicity result is obtained for a degenerate stationary Kirchhoff
problem governed by the p(x)-polyharmonic operator, with a subcritical term, through the mountain pass
theorem, while in [3] existence and multiplicity of solutions of certain eigenvalue stationary p-polyharmonic
Kirchhoff problems are considered, also in a degenerate setting.

Furthermore, the very interesting paper [27] treats the question of the existence and multiplicity of non-
trivial non-negative entire solutions of a Kirchhoff eigenvalue problem, involving critical nonlinearities and
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