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a  b  s  t  r  a  c  t

Pulse  is often  used  to excite  biological  systems.  The  inputs  such  as  irrigation,  therapy,  and  treatments
to  biological  systems  are  also  equivalent  to pulses.  This  makes  the  biological  system  behave  as  switched
models  under  the  function  of  the input.  To  reduce  difficulty  in model  parameter  estimation,  the  system
could  be  represented  as a switched  linear  model  under  the  pulse  excitation.  In  this  research,  we  stud-
ied  the  identification  of  a class  of  switched  linear  biological  models  with  single  input  and  the  system
matrix  dependent  on  the intensity  of  excitation.  System  identifiability  and  identification  were  discussed.
A recurrent-pulse  excitation  method  was devised  to provide  necessary  constraints  for  parameter  estima-
tion. The  recurrent-pulse  technique  allowed  determination  of  model  parameters  that  would  otherwise
be  difficult  to  determine  uniquely.  The  usefulness  of  the method  was  demonstrated  by  examples  includ-
ing  delayed  fluorescence  from  photosystem  II, which  was  well  known  as  a versatile  tool  for  sensing  plant
physiological  status  and  environmental  changes  in  the  literature.

©  2014  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Mathematical models are often used for analysis of biologi-
cal systems (Banik et al., 2007; Baroukh et al., 2013; Fallon and
Lauffenburger, 2000; Ropers et al., 2006). In developing a model,
it is important to analyze the model identifiability and adequacy
of constraints for unique parameter estimates. Although these
issues have been extensively discussed (Glonek, 1999; Grewal and
Glover, 1976; Harrison et al., 2002; Heijnen and Verheijen, 2013;
Orlov et al., 2001, 2002), there are not general identification and
experimental design methods to ensure unique parameter solu-
tions. Biological systems are especially difficult to identify. First,
biological systems often involve complex biochemical reactions
that result in high-order kinetics with many unknown parame-
ters (Guo and Tan, 2009; Lazár and Jablonský, 2009; Zhu et al.,
2005). Second, experimental observations are often limited. State
variables such as pH, temperature, and some material concen-
trations may  be measurable; but, it is common that not all the
state variables are continuously measurable, which can incur non-
unique-solution problems (Bystrov et al., 1985). Rich perturbations
are very important to parameter identification (Belkoura, 2005),
but biological systems often do not allow arbitrary excitation sig-
nals, which further increases the difficulty for biological system
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identification. For example, K+ ions could be used to perturb cells
for bioelectricity generation (Kaufman and Erlij, 1986), but it is
very difficult to change K+ concentration instantaneously and con-
tinuously according to a pre-designed pattern. Sometimes, long
and strong excitation can damage biological tissues or trigger
complex nonlinear adaptation processes, which will dramatically
increase the complexity of model structure and the difficulty of
model parameter estimation. Electroretinogram (ERG), for exam-
ple, depends on the degree of dark adaptation (Lei et al., 2006; Lu
et al., 2010). The complexity of chlorophyll fluorescence models
from plants is also affected by excitation light intensity (Guo and
Tan, 2011, 2014).

Although pulse is not believed as a rich perturbation as signals
with many variations like white noise or pseudorandom-binary-
sequence (Daves, 1970), it is still often used to excite biological
systems (Belyaeva et al., 2011; Lei et al., 2006; Lu et al., 2010) due
to it is easy to perform and the model structure under its excitation
can be simplified. For example, it has been extensively used in med-
ical imaging and laser induced fluorescence generation. The inputs
such as irrigation, therapy, and treatments to biological systems are
also equivalent to pulses. They are often the only input to the system
in given experiments. The biological system behaves as a switched
model under the function of the single input. The system matrix
may  depend on the intensity of the input (Guo et al., 2010; Lu et al.,
2010). To make model parameter estimation more realistic, the sys-
tems could be simplified as switched linear models (De Jong et al.,
2004; Gouzé and Sari, 2002; Guo et al., 2010). In this research, we
studied the identifiability and identification techniques of switched
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linear biological models with a single input and system matrix
dependent on the intensity of the input. A recurrent-pulse exci-
tation technique was designed to enhance the identifiability of
this type of biological models. The usefulness of the method was
illustrated by examples including delayed fluorescence from pho-
tosystem II, which was well known as a versatile tool for plant
physiological status and environmental changes measurement in
the literature (Goltsev et al., 2009; Guo and Tan, 2010a, 2013).

2. System responses and identifiability

An input-dependent switched linear biological model with a
single input and a pulse excitation may  be expressed as:

ẋ = A(u)x + Bu x ∈ Rn, A(u) ∈ Rn×n, B ∈ Rn×1, u ∈ R1 (1)

where

u =
{

u0 0 ≤ t ≤ td

0 t > td

(2)

x is a vector of state variables, n is the model order, and td is the
pulse duration. A(u) contains model parameters that need to be esti-
mated from experimental data. An example of the switched linear
biological model could be found in Guo et al. (2010). We  will ana-
lyze the model identifiablility by assuming one or more the state
variables in x are measurable. If an observable system output is a
linear combination of states rather than simply a state variable, it
can be represented as state by redefining the state variables. For
convenience, therefore, we assume that the observations are part
of or all the n state variables for discussion of system identifiabil-
ity. A(u0) and A(0) are each assumed to have n distinct eigenvalues
(�1 ∈ {�1

1, �2
1, . . .,  �n

1} and �2 ∈ {�1
2, �2

2, . . .,  �n
2}, respectively) and all

the states are assumed to be coupled together. If one state variable
is measureable, the eigenvalues can be determined by methods
such as the eigensystem realization algorithm (ERA) from forced
responses or initial condition responses (Juang and Pappa, 1985). It
is thus reasonable to assume that all the eigenvalues are available
or determinable from experimental data.

If D1 and D2 are the diagonal eigenvalue matrices of A(u0) and
A(0), respectively; P and U are eigenvector matrices of A(u0) and
A(0), respectively; Q and V are the inverse matrices of P and U,
respectively; then

A(u0) = PD1Q =

⎡
⎢⎢⎢⎢⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1
1 0 · · · 0

0 �2
1 · · · 0

...
...

. . .
...

0 0 · · · �n
1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn

⎤
⎥⎥⎥⎥⎦ (3)

A(0) = UD2V =

⎡
⎢⎢⎢⎢⎣

u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1
2 0 · · · 0

0 �2
2 · · · 0

...
...

. . .
...

0 0 · · · �n
2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn

⎤
⎥⎥⎥⎥⎦ (4)

Since D1 and D2 are determinable from experimental data, as
is obvious from Eqs. (3) and (4), multiple choices for the vector
directions of P, Q, U, and V matrices will result in non-unique A(u0)
and A(0).

2.1. System responses

For zero initial condition x = 0, the system response during a
pulse excitation (u = u0) is:

x =
∫ t

0

eA�Bu(t − �)d� = ˚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�1
1

e�1
1

�

1

�2
1

e�2
1

�

...
1

�n
1

e�n
1

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

t

0

(5)

where

 ̊ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11

n∑
i=1

q1i(Bu0)i p12

n∑
i=1

q2i(Bu0)i · · · p1n

n∑
i=1

qni(Bu0)i

p21

n∑
i=1

q1i(Bu0)i p22

n∑
i=1

q2i(Bu0)i · · · p2n

n∑
i=1

qni(Bu)i

.

.

.
.
.
.

. . .
.
.
.

pn1

n∑
i=1

q1i(Bu0)i pn2

n∑
i=1

q2i(Bu0)i · · · pnn

n∑
i=1

qni(Bu0)i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Following the excitation pulse, the system response will be an
initial condition response to the state variable values at the end of
the pulse, x(td). The response of state variable xi (i = 1, 2, . . .,  n) to
initial condition x(td) can be expressed as (Guo and Tan, 2010b):

xi = [ϕi x(td)]T

⎡
⎢⎢⎢⎢⎢⎣

e�1
2

t

e�2
2

t

...

e�n
2

t

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�1
1

e�1
1

td − 1

�1
1

1

�2
1

e�2
1

td − 1

�2
1

...
1

�n
1

e�n
1

td − 1
�n

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

e�1
2

t

e�2
2

t

...

e�n
2

t

⎤
⎥⎥⎥⎥⎥⎦ (i = 1, . . .,  n) (7)
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