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Background: Seizure prediction can increase independence and allow preventative treatment for patients with
epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated,
patient-specific, and tunable to an individual's needs.
Methods: Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory
system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier
was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on
held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third,
the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a
demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic
chip for autonomous operation on a wearable device is provided.
Results: The prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly
surpassing an equivalent random predictor for all patients by 42%.
Conclusion: This study demonstrates that deep learning in combination with neuromorphic hardware can
provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low
power consumption and reliable long-term performance.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Epilepsy
Seizure prediction
Artificial intelligence
Deep neural networks
Mobile medical devices
Precision medicine

1. Introduction

Epilepsy is singularly unusual among other serious neurological con-
ditions because seizures are brief and infrequent, so that for at least 99%
of the time patients are unaffected by seizure activity. Although seizure
activity is infrequent, the disability caused by epilepsy can be significant
due to the uncertainty around the occurrence and the consequences of
the events. The constant uncertainty impairs the quality of life for
these individuals. A recent survey confirmed that the majority of
patients find this unpredictability to be the most debilitating aspect of
epilepsy (“2016 Community Survey,” 2016). There is an unmet need
for a device that provides a warning when there is an increased risk of
a seizure.

Awarning system could support new treatment approaches and im-
prove a patient's quality of life. For example, such a system could inform
patients' daily routines and help them to avoid dangerous situations
when at higher risk of seizure. Tracking fluctuations in seizure

likelihood could also be used to titrate therapeutic interventions, reduc-
ing the time spent using anti-epileptic drugs or electrical stimulation.

Given the nature of epilepsy, there are undeniably technological and
theoretical hurdles to creating a viable warning system for seizures;
however, such a system is no longer considered impossible to build
(Freestone et al., 2015;Mormann and Andrzejak, 2016). A key develop-
ment has been the use of long-term electroencephalography (EEG)
data. After a long-term clinical trial, Cook et al. were able to demonstrate
success of an implantable recording system, seizure prediction algo-
rithm, and handheld patient advisory device (Cook et al., 2013). Using
this device, the group recorded a dataset that comprises a total of over
16 years of continuous intracranial electroencephalography (iEEG) re-
cording and thousands of seizures. Cook et al. established the feasibility
of seizure prediction in a clinical setting, and provided inspiration for
the development of further seizure prediction algorithms (Freestone
et al., 2017).

Despite the trial's success, there were also limitations (Elger and
Mormann, 2013). While pre-seizure patterns in the iEEG data were
extracted in an automated fashion, it was based on a limited and pre-
defined set of features, which may be one reason that prediction was
not possible for all patients. After the initial design phase, the algorithm
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was no longer tunable,making the system inflexible to patients' changing
preferences regarding false alarm and missed seizure rates.

As preictal patterns are patient specific, no pre-determined set of
features will be able to capture all possible preictal signatures.
Therefore, standard feature engineering techniques are unsuitable for
the creation of a generalizable predictor (Freestone et al., 2017). Instead
of restricting the feature space a-priori, all data should be considered
potentially relevant for recognizing preictal patterns – a task to which
novel computational techniques are uniquely suited.

Deep learning, a machine learning technique, is a powerful compu-
tational tool that enables features to be automatically learnt from data
(LeCun et al., 2015). Typically, deep learning is used to train a class of al-
gorithms known as deep neural networks to perform specific tasks. The
availability of big data has cemented the usefulness of deep learning for
a diverse range of problems (LeCun et al., 2015). Applications range
from self-driving cars via robotics to novel diagnostic and treatment op-
tions in medical imaging, healthcare, and genomics (“FACT SHEET,”
2016; Gulshan et al., 2016; Litjens et al., 2017; Ratner, 2015; Stebbins,
2016). Recent open source seizure prediction competitions
(Brinkmann et al., 2016; “Melbourne University AES/MathWorks/NIH
Seizure Prediction | Kaggle,” 2016) have shown that machine learning
techniques are able to produce pre-eminent results, suggesting this
method may provide a path to clinical translation of seizure prediction
devices. However, the best performing algorithms in competitions
often require an unrealistic amount of computing resources for a
wearable device (“Melbourne University AES/MathWorks/NIH Seizure
Prediction | Kaggle,” 2016).

For seizure prediction to be implemented in a clinical device, it is
necessary for algorithms to run on small, low-power technology. A
number of recent advances in computing led to the development of
sophisticated deep learning algorithms using ultra-low power chips
(Furber, 2016). One example of such a chip is IBM's TrueNorth
Neurosynaptic System (Esser et al., 2016; Merolla et al., 2014).
TrueNorth is a specialized chip capable of implementing artificial neural
networks in hardware and hence it is neuromorphic in nature. It is one
of themost power-efficient chips to date, consuming b70mWpower at
full chip utilization. The chip's neuromorphic technology allows for the
deployment and testing of algorithms thatwere previously unrealizable
in a clinically viable seizure warning system.

Seizure prediction has been established as clinically feasible and
highly desirable for patients. In light of promising results (Brinkmann
et al., 2016; Cook et al., 2013; Howbert et al., 2014), the development
of a practical seizure warning device has been declared a grand chal-
lenge in epilepsy management (“Seizure Gauge Challenge,” 2017). In
this paper, we describe how deep learning and the TrueNorth processor
can be leveraged to advance the task of patient-specific seizure predic-
tion. Prediction results were benchmarked using data recorded during
the trial undertaken by Cook and colleagues (Cook et al., 2013). The pre-
sented results address several limitations of this earlier study, and pro-
vide proof-of-concept for a deep learning system for seizure prediction.

2. Materials and Methods

The overall study design is shown in Fig. 1. The iEEG signal is recorded
using intracranial electrodes (magenta circles). Annotated iEEG signals
are processed by a deep neural network that is trained to distinguish
between preictal and interictal signals. The resulting deep learning
model is subsequently deployed onto the neuromorphic TrueNorth chip.

2.1. System Design Rationale

The objective of this study is the development, implementation, and
evaluation of a clinically relevant seizure prediction system. In order for a
system to be valuable to patients while beingmaintainable by clinicians,
we defined the following goals:

G1. The system needs to perform well and reliably across patients.
G2. The system needs to operate autonomously over long periods of

timewithout a requirement for regularmaintenance or reconfig-
uration by an expert.

G3. The system needs to allow for patients to set personal prefer-
ences with respect to sensitivity.

G4. The system must run in real-time on a low-power platform.

We addressed performance (G1) and long-term feasibility (G2)
using deep learning, a technique that, in contrast to a more traditional
feature engineering approach, does not rely on data analysis experts
for themonitoring and adaptation ofmodels. Unlike traditional comput-
ing systems that learn through instructions or explicit programming,
deep learning algorithms learn fromexamples to automatically discrim-
inate different classes of signals. In the context of a seizure prediction
system, this is what allows the algorithm to distinguish between
preictal and interictal data segments. By its nature, a system using an ar-
tificial neural network cannot only adjust to each individual patient's
brain signals, but also to short- and long-term changes in the recording.
It further allows for the integration of other patient-specific variables
that have been shown to co-vary with seizure likelihood, such as time
of day information. Moreover, a deep neural network can automatically
learn to discriminate between different classes of data, for example, in
this case, preictal and interictal.

Generally, a classification neural network such as the one used in our
study will classify the signal on a sample-by-sample basis, leading to
potentially very frequent but short alarms. In a real-time system, an ad-
ditional processing layer is therefore required to balance the sensitivity
of the system, number, and duration of alarms. In addition to forming
the basis of system optimization, this processing layer also allows for
instantaneous tuning of the system's sensitivity by the patient directly
(G3).

Adaptation to changes of the signal over time (G2), as for example
observed by Cook et al. (2013) were addressed in both processing
layers.

Running a neural network classifier in a real-time environment
requires specialized hardware (G4). TrueNorth is a highly power-
efficient and specialized chip. The network needed to be adapted to
run on the TrueNorth chip.

Fig. 1. Concept of seizure advisory system: a) Training phase: iEEG signal is recorded via
intracranial electrodes (magenta circles indicate a possible configuration) and
recordings are passed on to a deep learning network (green network graph). The model
is subsequently deployed onto a TrueNorth chip. b) Inference phase: iEEG signal is
recorded via intracranial electrodes (magenta circles) and recordings are passed on to
the TrueNorth chip. Prediction of a seizure is indicated to the patient on awearable device.
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