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Abstract

A proximal bundle method with inexact data is presented for minimizing an unconstrained nonsmooth
convex function f . At each iteration, only the approximate evaluations of f and its ε-subgradients are
required and its search directions are determined via solving quadratic programmings. Compared with the
pre-existing results, the polyhedral approximation model that we offer is more precise and a new term is
added into the estimation term of the descent from the model. It is shown that every cluster of the sequence
of iterates generated by the proposed algorithm is an exact solution of the unconstrained minimization
problem.
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1. Introduction

We consider the problem

min{ f (x) | x ∈ Rn}, (1.1)
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where f : Rn → R is a nonsmooth convex function. It is well known that many practical
problems can be formulated as (1.1), for example the problems of catastrophe, ruin, vitality,
data mining, and finance. At the moment, bundle methods are the most efficient and promising
methods for solving nonsmooth optimization problems.

Traditional bundle methods use the exact values of f and its subgradients. But, generally, it is
difficult to evaluate them. For example, consider the situation of Lagrangian relaxation; see [1–3,
7]. The primal problem is

max{q(ξ) | ξ ∈ P, h(ξ) = 0}, (1.2)

where P is a compact subset of Rm and q : Rm → R, h : Rm → Rn . Lagrangian relaxation of
the equality constraints in this problem leads to problem (1.1), where

f (x) = max
ξ∈P

{q(ξ) + 〈x, h(ξ)〉} (1.3)

is the dual function. Trying to solve problem (1.2) by means of solving its dual problem (1.1)
makes sense in many situations. In this case, evaluating the function value f (x) and a subgradient
z(x) ∈ ∂ f (x) requires solving the optimization problem (1.3) exactly. Actually, in some cases,
computing exact values of f is unnecessary and inefficient. For this reason, some modifications
of bundle methods using inexact data were proposed; for instance, see [4,6] and [9]. In [4], the
proposed algorithm only requires the ε-subgradient ξ(x) of f at a given point x ∈ Rn for fixed
ε ≥ 0, i.e., ξ(x) ∈ ∂ε f (x) = {y ∈ Rn | f (ζ ) ≥ f (x) + 〈y, ζ − x〉 − ε,∀ζ ∈ Rn}, the ε-
subdifferential of f at x ; see [8]. An ε-optimal solution of (1.1) can be found without assuming
the knowledge of ε. But the exact function values of f are needed, so this setting is not suitable
for some important applications of bundle methods, for example as discussed above, for the
Lagrangian relaxation.

On the basis of the above observation, throughout this paper we make the following
assumptions: at each given point x ∈ Rn , and for ε ≥ 0, we can find some f̃ ∈ R and z(x) ∈ Rn

satisfying

f̃ ∈ [ f (x) − ε, f (x)]
f (ζ ) ≥ f (x) + 〈z(x), ζ − x〉 − ε̄, ∀ζ ∈ Rn,

(1.4)

where ε̄ = ( f (x) − f̃ ). At the same time, it can be ensured that

f̃ j → f̃k if y j → xk, (∗)

where f̃ j ∈ [ f (y j )−ε j , f (y j )] and f̃k ∈ [ f (xk)−εk, f (xk)] for given ε j > 0 and εk > 0. This
setting is realistic in many applications; see [5,9]. The condition (1.4) means that z(x) ∈ ∂ε f (x).
A similar assumption was once used in [6], in which (1.4) is replaced by f̃ ∈ [ f (x)−ε, f (x)+ε]
and its ε-subgradients. But, when compared with [6], it will be seen that, under the assumption
(1.4), the polyhedral approximation model of f constructed in Section 2 is above the one
proposed in [6], such that the algorithm proposed in Section 5 has a much stronger convergence
property.

This paper is organized as follows. In Sections 2 and 3 we introduce a polyhedral
approximation of the objective function by employing the inexact data of the involved functions
and find a possible descent direction by solving a quadratic programming. The inner iteration for
determining the serious step and the null step is presented in Section 4. In the last section, we
offer an algorithm for solving (1.1) and analyze its convergence as well.
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