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This  work  analyzes  the  propagation  of (2 + 1) dimensional  spatial  solitons  in parity-time
(PT)  symmetric  potential.  The  stationary  solution  of  the  system  has  been  studied.  The  beam
dynamics  has  been  analyzed  using  variational  and  numerical  methods.  The  soliton  beam
propagation  is  stable  when  the  coefficient  of  imaginary  potential  is  less  than  a  threshold,
which  is  called  the  phase  transition  point.  Above  the  transition  point,  the  imaginary  compo-
nent  of the  solution  starts  to  evolve  and  the  solution  becomes  unstable.  When  the  coefficient
of  imaginary  potential  exceeds  this  critical  value,  the power  of  the beam  increases  and
results in  the  unstable  beam  propagation.  The  stability  of  the  stationary  solution  against
small  perturbation  has been  studied  using  linear  stability  analysis.  The  imaginary  eigen
value  is zero  when  the  coefficient  of  the  imaginary  potential  is  low.  Above  the  phase  tran-
sition  point,  the  imaginary  eigen  value  becomes  comparable  with  the  real  eigen  value  and
hence the  solution  becomes  linearly  unstable.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The study of dissipative systems with non Hermitian Hamiltonians have attracted a lot of attention in recent years.
Such non Hermitian operators posses real spectra, provided that they obey parity-time (PT) symmetry. This concept
was introduced by Bender and Boettcher in 1998 [1–3]. According to their view, those non-Hermitian Hamiltonian share
common set of eigen functions with the PT operator posses real spectra. The PT operations can be stated as follows [4–7].
Under the action of parity operator, p̂→ −p̂, x̂→ −x̂ (p̂ and x̂ are the momentum and position operators respectively) and the
action of time reversal operator results p̂ → −p̂, x̂ → x̂, i → −i. The Hamiltonian of a physical system is Ĥ = (p̂2/2m) + V(x),
where m is the mass and V is the complex potential. Under time reversal operation, T̂ Ĥ = (p̂2/2m) + V∗(x). After the parity
operation P̂T̂ Ĥ = (p̂2/2m) + V∗(−x) and ĤP̂T̂ = (p̂2/2m) + V(x). For the Hamiltonian to be PT symmetric, P̂T̂ Ĥ  = ĤP̂T̂ .  That is
possible only if the condition V(x) = V*(−x) is satisfied [2]. In order to satisfy the above condition, the real part of the complex
potential must be an even (symmetric) function of position, where as the imaginary part should be an odd (antisymmetric)
function. The dissipative systems, which include exactly balanced linear gain and loss, are described by non-Hermitian
Hamiltonians, whose Hermitian and non-Hermitian parts are spatially even and odd, respectively. It was also demonstrated
that when the non-Hermitian Hamiltonians are PT symmetric, they undergo a phase transition (PT symmetry breaking)
above a critical threshold, above which the eigen value spectrum becomes partially complex [8]. This concept of PT
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symmetry of a non-Hermitian Hamiltonian generalizes quantum mechanics in a complex domain [5,9]. PT symmetry finds
applications in various areas of physics ranging from PT symmetric quantum oscillators to linear and nonlinear optics [1,4].

PT symmetric structures have been realized in optics by Christodoulides et al. [6,10]. Such systems can be realized through
the inclusion of gain/loss regions in guided wave geometries. In the optical systems the complex refractive index distribution,
n(x) = nr(x) + ini(x) plays the role of the optical potential [10–13]. The PT symmetry condition implies that the index wave
guiding profile nr(x) is an even function in the transverse direction while the loss or gain term ni(x) is an odd function. PT
symmetric optical systems have been experimentally demonstrated in AlGaAs [14], photorefractive materials [6], silicon,
fiber optics, and light-written guides in glass [15–17], etc. The observation of PT symmetry in linear optical systems led
to its generalization to the nonlinear case, which provides several interesting predictions. It was  also demonstrated that
PT symmetric nonlinear optical systems can support soliton solutions [12,18]. Recently, soliton beam propagation in PT
symmetric optical media has been a subject of intense research because the beam dynamics in such systems can exhibit
unique characteristics such as double refraction, power oscillations, nonreciprocal diffraction patterns, etc. [19,20]. The
stability of the optical solitons in nonlinear PT symmetric systems is investigated in a number of complex potentials like PT
symmetric periodic potential, hyperbolic Scarf [21–23] potential, etc. Studies of PT symmetry have also been extended from
nonlinear lattice to double channel coupled wave guides [24–26], double-well potentials and asymmetric optical amplifier
[27]. Spatial solitons in self focusing and defocusing Kerr media and nonlocal media with PT symmetric potentials have also
been investigated [28,30].

This work analyzes the soliton beam propagation in a PT symmetric system, which is characterized by the nonlinear
Schrödinger equation with a complex potential with competing gain and loss profile. The paper is organized as follows. In
Section 2, the stationary solutions of the system have been studied in different imaginary potentials. In Section 3, the beam
dynamics has been analyzed using variational and numerical methods. In Section 4, the stability of the stationary solution
against small perturbation has been analyzed using linear stability analysis. Section 5 concludes the paper.

2. Stationary solution

The beam evolution in a (2 + 1)D self focusing Kerr media is governed by the normalized nonlinear Schrödinger equation
[29–31].

i z +  xx +  yy + V  + ˇ| |2  = 0. (1)

The suffixes z, x and y stand for the partial derivatives with respect to z, x and y respectively, V is the complex potential and
 ̌ = +1 corresponds to the self focusing nonlinearity. For radial symmetry, x2 + y2 = r2 and ∇2 = (1/r)(∂/∂r) + (∂2/∂r2). Then Eq.

(1) becomes

i z +  rr + 1
r
 r + V  + ˇ| |2  = 0. (2)

A PT symmetric potential can be implemented through the judicious inclusion of lumped amplification, Vr(r), which is
associated with index guiding and a loss/gain distribution term, Vi(r). Then the beam dynamics in a PT symmetric graded
index Kerr media is governed by

i z +  rr + 1
r
 r + (Vr(r) + iV i(r))  + ˇ| |2  = 0. (3)

PT symmetry demands that Vr(−r) = Vr(r) and Vi(−r) = −Vi(r). The complex PT symmetric potential is chosen in the form
V(r) = (Vr/2)r2 + iVir, where Vr and Vi are the coefficients of real and imaginary potential.

Stationary solution of Eq. (3) can be of the form  (r, z) = �(r)e−i�z [28], where �(r) is the nonlinear eigen mode which is
a complex function of r and � is the corresponding propagation constant. The nonlinear eigen value equation satisfied by
�(r) is given by

�rr + 1
r
�r + (Vrr2 + iV ir)� + ˇ|�|2� = −��. (4)

The differential equation (4) has been studied to analyze the beam intensity in different imaginary potentials. The modulus,
real and imaginary components of the stationary solution are shown in Fig. 1. Figure shows that the imaginary part of the
solution starts to evolve when the coefficient of imaginary potential exceeds a critical threshold, which is referred as the
phase transition or PT symmetry breaking. At � = 0.5, the imaginary component of the solution is negligible when Vi < 0.6
(as shown in the upper row of figure, Fig. 1(a)–(c)). When Vi ≥ 0.6, the solutions possess real and imaginary components.
Similarly, at � = 1.5, the solution is complex when Vi ≥ 1.2 (lower row of Fig. 1). The phase transition point increases with
the propagation constant. The variation of Vi with � at constant Vr(Vr = 1) is shown in Fig. 2.

3. Beam dynamics in PT symmetric potential

The semi-analytical results of Eq. (3) are given by the variational analysis [25,28–36] for the solution of the form,

 (r, z) = �(r, z) exp(−i�z), (5)
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