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a  b  s  t  r  a  c  t

A novel  phase  error  evaluation  technique  based  on Fourier  Transform  Method  is  presented
to  estimate  the phase  error  resolution  from  the spatial  interference  pattern.  The  highest
phase  error  resolution  is 3.4  × 10−8 × 2  �  rad in simulation.  The  simulation  has  shown  the
validity  of the  proposed  technique  compared  to  the  result  in  real  experiment.  The  influence
of bit  depth,  size  of  the pixel  and  the spatial  period  of  the interference  fringe  on  the  phase
error  resolution  is  also discussed  in detail.  The  results  are helpful  for  choosing  the  suitable
parameters  of CCD camera  and  controlling  the  whole  size  of the  integrated  microfluidic
differential  refractometer.
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Integrated optical differential refractometers refer to the measurement of small changes in the refractive index (RI) of
liquids and gases, offering solutions to a broad range of scientific and technical problems and applications. In an optical
interferometric system for RI detection, the measured detection limit is encoded in the phase error of interference fringe
patterns. The phase error is related to the corresponding changes in refractive index of the sample. The relationship is
expressed by the following expression:

�� = 2�

�
OPD = 2�L

�
�n

where �nis the change in refractive index of the sample, L is the optical length, and the � is the wavelength of laser.
There exit several methods for the phase extraction from interference fringe patterns such as Fourier transform method
(FTM) [1], Windowed Fourier transform method [2], wavelet transform (WT) method [3], phase-shifting (PS) technique
[4], curve fitting method [5] etc. Among these methods, Fourier transform for fringe pattern analysis is more tolerant to
noise, especially more effective for decreasing the influence of nonstationary noise. This method has already been used for
various kinds of interferometric techniques, such as holographic interferometry, shearography and moire interferometry.
Furthermore, it has been applied to refractive index detection by fringe analysis [6–8]
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Following Takeda [1] the principle of the FTM may  be summarized as follows. An interference fringe pattern can be
described as

I(x) = a + b[cos(2�f0x + �0)] (1)

where the coefficients a and b is the background and fringe amplitude respectively, f is the spatial frequency and �0 is
the initial phase.We can rewrite the Eq. (1) as

I(x) = a + c(x) exp(i2�f0x) + c∗(x) exp(−i2�f0x) (2)

with the definition

c(x) = 1
2

b exp(i�0) (3)

and the c∗(x) is the complex conjugate of c(x). Then Fourier Transform of Eq. (2), the result is given by

I(f ) = A(f ) + C(f − f0) + C∗(f + f0) (4)

where the capital letters denote the transforms of the corresponding functions and f is the spatial frequency domain. The
phase � is given by

� = tan−1{Re[c(x)]/Im[c(x)]} (5)

where Re[c(x)] refers to the real part of c(x) and Im[c(x)] to the imaginary part. Usually, the detected phase in Eq. (5) is
discontinuous and ranges from −� ∼ �, so the true phase will be obtained only after the phase in Eq. (5).

However, the phase evaluation with the FTM produces noticeable inaccuracies because of many error sources. For
instance, the error from incorrect frequency domain filtering operations; the error from random noise, disturbances of
the environment and vibrations; and the errors due to incorrect phase unwrapping. These errors will enhance the inaccu-
racy of phase error from the interference fringe. Those mentioned methods [1–5] have proposed some methods to improve
the resolution of phase error, but they were very complex and have limitations.

In this Letter, a new signal processing algorithm is proposed to estimate the phase error resolution from the spatial
interference pattern without noise. The method avoids complexity of those mentioned methods above. The detected limit of
the differential refractometer can be obtained from the phase error. We also investigate the influences of the CCD camera bit
depth by quantization principles, pixel width and distance between silt and CCD camera of integrated optical interferometer.
This study shows a simple method capable of detecting the detection limit of the integrated optical interferometer from
the fringe pattern. The three important parameters of the system which can affect the resolution of RI detection are also
investigated in this article. It shows that the optimal parameters for an integrated differential refractometer.

The phase extraction process and the phase error evaluation process are demonstrated as follows. Firstly, a simulated
interference fringe is presented by the sinusoidal function. The Fourier spectrum is transformed by FFT, and the terms A, C,
and C* of Eq. (4) are separably placed as three peaks in the frequency domain. A phase distribution curve is obtained by using
Eq. (5). Fig. 1(a),(b) and (c) shows a simulated pattern, the modulus of the discrete spectrum and the phase distribution. The
spectrum is displayed as frequency ranges from 0 to 2048 in Fig. 1(b), where 2048 is the number of CCD pixels. Fig. 1(c)
shows the unwrapped phase distribution.

Then we mark the position of maximum value of term C* and extract the phase information at the same position from

phase distribution curve. Thirdly, we replace �0 with �i in Eq. (1), where �i = �0 +
∑

i

��i, and ��i represent the step.

Then we repeat the phase extraction procedure with �i. A phase point is obtained and stored. A series of phase values are
calculated with many times. Some phases would not be changed in a range from N to N + M because of the limitation of
system. The value of M is phase error resolution of the optical interference system. The proposed method was verified by
computer simulation. All the calculations have been done in the Matlab environment. The calculation parameters have been
adjusted according to real experimental conditions: a pixel size of 14 �m,  a laser wavelength of 632.8 nm,  a distance between
two silts of 1.3 mm.

We assume the initial phase of Eq. (1) �0 = 0 and the value of �ichanges from 1 × 10-7 × 2� rad to 1 × 10-3 × 2� rad with
step ��i = 1 × 10-9 × 2� rad. The phase value distributes from 2.154861 to 2.155044 as shown in Fig. 2(a). The details of
“phase line” are shown in Fig. 2(b). It shows that some points of phases are in the same location. The number of unchanged
value of phase represents the phase error resolution of the interference system. The detection limit can be estimated by
using the phase error resolution. Compared to the experimental detection limit in article [9], the proposed method can be
proved to be efficient in noiseless case.

To measure the detection limit using the proposed method, the fringe patterns are digitized by a CCD camera. Hence,
the phase error resolution due to the quantization is simulated by computer. Quantization error determines limitations
of the acquisition devices in the measurement system and plays an important role in the calculation of system accuracy.
The effect of quantization was first investigated by Koliopoulos [10] for the phase stepping technique using a four-frame
(three-step) algorithm and was then further analyzed by Brophy [11]. RI detection limit is also affected by the CCD structures
such as bit depth, pixel width, shot noise [12] and so on. Jin Hongzhen et al. [13] investigated the influence of size of pixel,
sampling interval and sensitive area on the reconstruction image. When the fringe patterns are recorded by a digital camera,
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