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a  b  s  t  r  a  c  t

In  this  paper,  neural  network  approach  is addressed  for  signal  reconstruction  under  the  frame  of  com-
pressed  sensing.  By  introducing  implicit  variables,  we  convert  the  basis  pursuit  denoising  model  into  a
quadratic programming  problem.  Based  on  a class  of  generalized  Fischer–Burmeister  complementarity
functions,  we  establish  a neural  network  method  for the signal  reconstruction  of  compressed  sensing.  A
projection  neural  network  is also  presented  to recover  the  original  signals.  These  two  neural  networks  can
be  implemented  using  integrated  circuits  and two  block  diagrams  of  the  neural  networks  are  presented.
Based  on  our  proposed  method,  some  potential  applications  of the  compressed  sensing  are  discussed.
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1. Introduction

The signal processing ability of physical systems now faces to
the challenge of the rapid development of information technol-
ogy. The traditional signal processing technology is not suitable
for such vast amounts of processing data. In recent years, Donoho,
Candes, et al., proposed compressed sensing (CS) theory [1,2]. Com-
pared with the usual measure which compresses the data after high
rate sampling, the CS theory collects the sample data and compress
those data simultaneously, which reduces the collecting period and
the level of requirement on hardware. It breaks through the bottle-
neck of the Shannon sampling theorem, and becomes a hot research
direction rapidly. The CS theory has wide applications such as vari-
ous compression imaging, optical signal processing, hyperspectral
image information processing, analog-to-digital conversion, bio-
logical computing, remote sensing and other fields [3,4,11].

There are various methods for compressed sensing, such as basis
pursuit method [5,6], matching pursuit algorithm [7–9], iterative
threshold algorithm [10,11], gradient projection algorithm [12],
interior-point method [13] and so on. For 2D images, it is com-
mon to use the Gaussian i.i.d. matrix as the measurement matrix,
that makes the matrix dimension pretty high and leads to great dif-
ficulty in storage and computation. Therefore, compressed sensing
is not suitable for the real-time image processing. Gan proposed
block compressed sensing, which greatly reduced the storage and
the computational complexity [14]. Mun  and Fowler developed
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the block compressed sensing with smooth projecting Landwe-
ber [15]. After that they proposed a multiscale algorithm of the
block compressed sensing, measuring signals in wavelet domain
[16]. Utilizing gray entropy, Wang et al. proposed an algorithm to
describe the textural of images for the block compressed sensing
[17]. Liu et al. presented an adaptive algorithm with support and
signal value detection for compressed sensing [18]. Wang, Yang, Li
gave an adaptive sampling method of compressed sensing based
on texture feature [19]. The scheme classifies the image blocks in
the light of textural, and then combines the statistical characteris-
tic of the coefficient in wavelet domain to allot the measurements.
From another way, we establish neural network approaches,
which can make the compressed sensing possible for real-time
processing.

In this paper, we  present two neural networks for the
compressed sensing signal reconstruction. Neural networks for
optimization were first introduced in the 1980s by Hopfield and
Tank [20,21]. Since then, significant research results have been
achieved for various optimization problems [22–24]. The main
idea of the neural-network approach is to construct a nonnegative
energy function and establish a dynamic system that represents
an artificial neural network. The dynamic system is usually in the
form of first order ordinary differential equations. Furthermore, it
is expected that the dynamic system will approach its static state
(or an equilibrium point), which corresponds to the solution for the
underlying optimization problem, starting from an initial point. In
addition, neural networks are hardware-implementable. The neu-
ral network method can make the compressed sensing possible for
real-time signal processing. So there are some potential applica-
tions in forecasting and intelligent information processing.
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The rest of the paper is organized as follows. In Section 2,
we give some equivalent compressed sensing signal reconstruc-
tion models. In Section 3.1, we establish a neural network method
based on a class of generalized Fischer–Burmeister complementar-
ity functions. In Section 3.2, a projection neural network approach
is designed to the compressed sensing signal reconstruction. Some
potential applications are presented in Section 3.3. Section 4 con-
cludes this paper.

2. Problem formulation under CS framework

Consider a length-n, real-valued signal x. In compressed sensing
theory, the signal x to be acquired and subsequently reconstructed
is typically assumed to be sparse or compressible in an orthogonal
basis � which provides a K-sparse representation of x; that is x = ��.
According to the CS theory, such a signal x can be acquired through
the following random linear projection:

b = Ax = A��  = ��,  (1)

where b is the sampled vector with m � n data points, A represents
an m × n sensing matrix and � = A�.

To recover the signal x, the approach is to seek a solution of the
l0 minimization problem:

min  ||�||0 s.t. b = ��.  (2)

Obviously, the above minimization problem is a NP-hard problem.
The solution of (2) is not unique, and we need to enumerate all
possible � that meet the condition. Fortunately, the above problem
becomes computationally tractable if the sensing matrix A satisfies
a restricted isometry property (RIP) which introduced by Candés
and Tao in [25,26,29].

Since l0-norm minimization problem is hard to solve, there are
some other models constructed. Substituting l1-norm with l0-norm
in (2), we get the following optimization problem:

min  ||�||1 s.t. b = ��.  (3)

Donoho et al. showed that problems (2) and (3) are equivalent
[5,27,28]. l1-norm minimization problem is very useful not only
in compressed sensing, but also in some other applications.

For a more applicable situation, the measurements are cor-
rupted with noise. We  observe

b = ��  + n (4)

where n is an unknown term. In this context, we propose two neural
network methods reconstructing � as the solution to the convex
optimization problem:

min  ||�||1 s.t. ||�� − b||2 � �, (5)

where � is an upper bound on the size of the noisy contribution. By
Lagrange multiplier scheme, the model (5) can be transformed into
the following basic pursuit denoising model:

min
1
2

||�� − b||22 + �||�||1. (6)

By introducing the positive part a+ = max  {0, a} and negative part
a− = (− a)+ of the real number a, the problem is transformed equiv-
alently to the following optimization problem:

min
1
2

||�(u − v) − b||22 + �1T
nu + �1T

nv, (7)

where u = �+, v = �−. Through appropriate deformation, the
above optimization problem can be equivalently converted into the
following quadratic programming:

min  cT z + 1
2

zT Bz

s.t. z � 0

where z =
(

u
v

)
, d = �Tb, c = �12n +

(
−d
d

)
, B =(

�T � −�T �
−�T � �T �

)
. The KKT optimality conditions for the

above quadratic programming are given by⎧⎨
⎩

c + Bz − w = 0

wT z = 0

w � 0, z � 0

(8)

It can also be written as{
(c + Bz)T z = 0

c + Bz � 0, z � 0
(9)

3. Neural network approach and some potential
applications

In this section, we establish two neural network models. The
first neural network model is developed based on complementarity
functions. And the second one is to use the projection mapping.
Using the neural network approach, we  will explore some potential
applications of the compressed sensing.

3.1. Neural network design with generalized Fischer–Burmeister
function

It is known that the complementarity function approach can be
used for solving system (8). Motivated by the approach, we pro-
pose a neural network model. A function � : R × R → R is called a
complementarity function if it satisfies

�(a, b) = 0 if and only if ab = 0, a � 0, b � 0.

Now we introduce a class of complementarity functions

��(a, b) = a + b −
√

a2 + b2 + (� − 2)ab, ∀a, b ∈ R (10)

where � ∈ [0, 4) is an arbitrary but fixed parameter. Then the system
(8) is equivalent to the following system

G(z, w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

c + Bz − w

��(z1, w1)

��(z2, w2)

·  · ·
��(z2n, w2n)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (11)

Construct a nonnegative energy function

�(z, w)  = 1
2

||G(z, w)||2 = 1
2

||c + Bz − w||2 + 1
2

2n∑
i=1

||��(zi, wi)||2.(12)

So the quadratic programming can be equivalently converted into
the following unconstrained minimization problem

min  �(z, w). (13)

Based on the above smooth minimization problem (13), it is natural
to propose a neural network:⎧⎨
⎩

dX(t)
dt

= −�∇�(X(t))

X0 = X(t0)
(14)
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