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a  b  s  t  r  a  c  t

The  long-term  nonlinear  propagation  of  Gaussian  and  super-Gaussian  optical  pulses  in  the
anomalous  dispersion  regions  of  optical  fibers  are  investigated  numerically  in  terms  of  the
pulse  shapes  and  spectra  evolution.  The  results  show  that,  both  the  pulse  shapes  and  spectra
exhibit interesting  damped  oscillation  behavior  with decreasing  oscillation  amplitude  for
very long  distance.  In particular,  the  spectra  profiles  exhibit  interesting  arrow  shaped  evolu-
tion.  Variations  of the  pulse  widths,  maximal  normalized  amplitudes,  and  maximal  spectral
amplitudes with  the propagation  distance,  are  also  presented.  We  find  that,  for  the  higher-
order  super-Gaussian  pulses,  their  pulse  widths  and maximal  normalized  amplitudes  have
larger  values  of  oscillation  periods  and  initial  oscillation  amplitudes.  However,  the higher-
order super-Gaussian  pulses  have  larger  values  of average  pulse  widths  but smaller  values
of  average  maximal  normalized  amplitudes.  In frequency  domain,  the  higher-order  super-
Gaussian pulses  have  larger  values  of average  maximal  spectral  amplitudes.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introductions

It has been demonstrated that in the anomalous dispersion and positive Kerr nonlinearity regimes, optical fibers can
support hyperbolic-secant shaped fundamental and higher-order bright optical solitons. The former is of special significance
for the reason that it can all along maintain its pulse width as well as shape and spectral profiles during propagation.
Accordingly, it founds important applications in soliton optical communication systems. While the latter exhibits interesting
breather behavior with its width as well as shape and spectral profiles varying and recovering periodically. Practically,
however, a natural question is, as Agrawal [1] asked, what happens if the initial input pulse does not correspond to an
optical soliton. Typically, for example, the actual input pulse may  not be exactly matched to an optical soliton in terms of
its shape, pulse width, initial phase, or peak power. Such questions involve mathematically the initial value problems of
nonlinear Schrödinger equation and physically the soliton stability or soliton perturbation.

Previous report has revealed analytically, experimentally, and numerically that [1–3], when the soliton order number
(which is closely related to the pulse width and the peak power) of the input pulse is not an integer which is required by an
soliton, the pulse will adjust itself and evolve asymptotically into a standard soliton. During this evolution process, the pulse
will disperse away parts of the pulse energy which is referred to as the continuum radiation or the dispersive wave. The
interference between the dispersive wave and the asymptotic soliton will cause spectral oscillations or spectral modulations
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Fig. 1. The contour maps of shape evolutions of Gaussian and super-Gaussian pulses for different parameters m.

[3]. The pulse will experience long-time asymptotic evolution before the final soliton formation. Of course, the initial soliton
order must be larger than 0.5, otherwise, no soliton can be formed eventually. In addition, the effect of the initial frequency
chirp or the initial phase modulation on the soliton formation has also been investigated extensively [4–11]. However, to our
best knowledge, when the pulses are of the Gaussian or super-Gaussian shapes, previous reports have studied the optical
wave breaking in the normal dispersion regime [12,13]. While in the anomalous dispersion regime, previous study mostly
limited to the cased of the short distance numerical evolution and coarse qualitative description [1]. All in all, the long-term
nonlinear propagation and detailed evolution properties of these pulses still remain incomplete. Thus, the purpose of this
work is to numerically study the long-term nonlinear propagation properties of the initial Gaussian or super Gaussian optical
pulses with different degrees of edge sharpness in the single-mode optical fiber in detail.

2. Calculations and discussions

The familiar standard nonlinear propagation equation in the anomalous dispersion regime is of the following form [1]
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0 /|ˇ2| are respectively normalized envelope of the optical field, normalized time, nor-

malized propagation distance, and soliton order number. And �2, � , P0, T0, z, and LD, are the second-order group velocity
dispersion (GVD) coefficient, cubic nonlinear coefficient, incident optical power, pulse width, propagating distance, and the
dispersion length, respectively.

We assume that the initial optical pulse is of the following super-Gaussian form
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(
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)
(2)

where m is the order number which reflects the degree of edge sharpness. When m = 1, Eq. (2) corresponds to the Gaussian
pulse. According to Eqs. (1) and (2), we can numerically calculate the nonlinear evolution of the Gaussian or super-Gaussian
pulse by utilizing the split-step Fourier method. During calculation, we set the common parameter N = 1.

Fig. 1 shows the contour maps of shape evolutions of Gaussian and super-Gaussian pulses for different parameters m.
Clearly, the pulse amplitudes and widths exhibit interesting oscillation behavior for very long normalized propagation.
But the oscillation amplitudes and periods are different depending on different values of parameter m.  One can see this
characteristic more clearly from Fig. 2 where the variations of maximal normalized amplitudes and pulse widths with
propagation distance for different parameters m are shown. Their damped oscillation characteristics are very obvious. But
their decay rates will reduce as increase of the propagation distance, which means that the distances required to evolve to
soliton pulses cannot be short but extremely long instead. Moreover, for higher-order super-Gaussian pulses, their pulse
widths and maximal normalized amplitudes have larger values of oscillation periods and initial oscillation amplitudes.
However, higher-order super-Gaussian pulses have larger values of average pulse widths but smaller values of average
maximal normalized amplitudes.
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