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a  b  s  t  r  a  c  t

The  virtual  crystal  approximation  is employed  to  carry  out a numerical  modeling  of  a  nonideal  one-
dimensional  Si-based  photonic  crystal  comprised  of  topologically  ordered  sets  of  layers  with  randomly
included  doping  plasma  layers.  The  constructed  model  proves  efficient  for evaluation  of  the  photonic  band
gap  as  a function  of plasma  layer  concentration.  The  presence  of  defect  layers  is  shown  to  significantly
alter  the photonic  spectrum  of the  superstructure.  Calculations  show  that  an  appropriate  choice  of  dopant
concentration  is capable  of reducing  the band  gap  to zero,  thus  turning  the  lattice  into  a frequency  filter.
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1. Introduction

Until very recently the propagation of electromagnetic waves in
layered crystalline media has been drawing an unabating attention
[1–3]. Tolmachov et al. gave a survey of studies devoted to silicon-
and liquid crystal-based photonic structures [4]. Zhang et al. used
the plane wave expansion method to investigate the properties of
photonic band gaps in three-dimensional plasma photonic crystals
composed of isotropic dielectric and unmagnetized plasma with
diamond lattices [5,6]. An interest for these objects is on one hand
explained by their significance for electronics, and on the other
hand is due to the progress in methods of the growth of ultrathin
films and periodic structures with controllable characteristics.

There are numerous theoretical and experimental studies
devoted to exciton-like excitations in ideal dielectric superlattices.
A general theory of optical waves in anisotropic crystals, including
those, formed of macroscopic layers, is discussed in a well-known
book by Yariv and Yeh [7]. Further advance of the theory of lay-
ered structures requires the adoption of more complex models
such as that of a superlattice with randomly included impurity lay-
ers. An understanding of the effect of such admixtures on optical
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properties of the corresponding systems is indispensable for the
effective manufacturing of layered materials with desirable char-
acteristics.

The methods of calculation of polaritonic excitation spectra are
quite similar to those used in the cases of electronic, phononic and
other types of quasiparticle excitations. In the present paper we uti-
lize the virtual crystal approximation (VCA) [8,9], which is based on
the configurational averaging technique to study polaritonic exci-
tations in a macroscopically inhomogeneous medium. Until now
this method has been applied for microscopic calculations of quasi-
particle excitation spectra in disordered systems. The main idea
of the VCA consists in replacement of configurationally dependent
Hamiltonian parameters by their configurationally averaged val-
ues.

An efficient description of transformation of polaritonic spectra
in simple superlattices caused by doping layers is essential for the
study of imperfect layered structures. Evaluation of polaritonic
spectra and of related quantities (such as the density of states
of elementary excitation as well as various characteristics of
normal electromagnetic waves etc.) in less simple systems usu-
ally requires the use of more complex methods. Such can be the
method of coherent potential [11] or the averaged T-matrix method
[10,12].

In what follows we model a superlattice as a set of macro-
scopically homogeneous layers with randomly included foreign
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Fig. 1. A two-sublattice superstructure with randomly included (in the 2nd sublat-
tice) impurity layers.

(with respect to an ideal structure) layers of variable thicknesses
(Fig. 1). Configuration-dependent material tensors of the imper-
fect superlattice are expressed through the appropriate random
quantities. Configurational averaging “restores” the translational
symmetry of the considered structure and permits to obtain a
system of equations, which define the normal modes of electromag-
netic waves, propagating through the resulting one-dimensional
“periodic” medium.

2. The model

Dielectric ε̂ (r) and magnetic �̂ (r) permeabilities, which deter-
mine optical characteristics of a periodic medium are subject to
periodic boundary conditions:

ε̂ (x, y, z) = ε̂ (x, y, z + d) , �̂ (x, y, z) = �̂ (x, y, z + d) ,

where d = ∑�
j=1aj is the superlattice period, � is the number of

layers per one elementary cell, aj are the thicknesses of layers,
which form a one-dimensional chain of elements oriented along
the z-axis. Material tensors ε̂ and �̂ of a crystalline superlattice
with an arbitrary number of layers � have the following coordinate
representation [13]:(
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Here � (z) is the Heaviside step function, index n =±1, ± 2, . . .
numerates one-dimensional crystal cells, whereas  ̨ = 1, 2, . . .,  �
numerates elements in a cell. Within our model the configura-
tionally dependent tensors ε̂n˛, �̂n˛, an˛ are expressed through the
random quantities ��

n˛, where ��
n˛ = 1 if the �(˛)th type of layer

occupies the (n˛) th  site of the one-dimensional crystalline lattice,
and ��

n˛ = 0 otherwise:(
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By analogy with the quasi-particle approach the VCA is used
here to calculate polaritonic spectrum of the imperfect superlat-
tice using the following replacements: ε̂ →

〈
ε̂
〉

, �̂ →
〈

�̂
〉

(and

d →
〈

d
〉

, an˛ → 〈an˛〉 for variable thickness of layers). Angular
parentheses designate the procedure of configuration averaging.
Eq. (2) yields( 〈
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where C�(˛)
˛ is concentration of the � (˛) th sort of impurity layers

contained in the ˛th sublattice. There must hold an obvious
relation

∑
�(˛)C

�(˛)
˛ = 1. In the framework of the virtual crystal

approximation the problem of finding of the main quantities of
interest (such as the spectrum, the band gap etc.) as well as the
problem of finding of polaritonic characteristics is reduced to an
analogous problem for an ideal multilayer material with the aver-
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Since configurational averaging “restores” the translation sym-
metry of the one-dimensional imperfect superlattice we  can write
the Maxwell equations for amplitudes E (r, ω), H (r, ω) of the har-
monic time dependencies of the electric and magnetic fields.
According to Floquet theorem the Fourier-amplitudes f(E,H)

K,p of elec-
tric and magnetic field strengths satisfy the relation:
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where � is an arbitrary planar (lying in XOY plane) wave vec-
tor, ez is a unit vector directed along the z-axis, K = (0, 0, K) is
the Bloch vector. System (5) defines the normal modes of elec-
tromagnetic waves, propagating through the considered “periodic”
medium. For simplicity, we shall restrict our study to the case of
light propagation along the z-axis (� = 0) in a nonmagnetic lat-
tice ( �̂ = Î  being a unit matrix) with uniaxial liquid–crystal layers
εij = εxxıxiıjx + εyyıyiıjy + εzzıziıjz. It is obvious, that for K||z the zz-
components of tensor ε̂ do not appear in the resulting formulas
and εxx = εyy ≡ ε. Furthermore, similarly to Ref. [6] we  shall assume
that the value of K is close to the one defined by Bragg’s condi-
tion:
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)∣∣ ≈ K , c2K2 ≈ ω2ε0. Under these circumstances,

the only essential Fourier-components f(E,H)
K,p of electromagnetic

plane waves are the ones with p = 0 and −1. Retaining these com-
ponents in Eq. (5) we arrive at the following equation:⎡
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where εl=0 ≡ ε(0), εl=±1 ≡ ε(±1). The dispersion relations ω± =
ω (K) are obtained from the system (6) by setting its determinant
equal to zero. The two roots of the resulting equation ω± define the
spectral band boundaries. For frequencies falling within the band
gap ω− (K) < ω < ω+ (K) the said roots are complex and therefore
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