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a  b  s  t  r  a  c  t

Coherence-enhancing  diffusion  filtering  is a striking  application  of the  anisotropic  diffusion  in  image
processing.  The  technique  deals  with  the  problem  of  completion  of  interrupted  lines  and  enhancement  of
flow-like  features  in  fingerprint  images.  However,  an  anisotropic  diffusion  process  is  an iterated  process,
initializes  with  a poor  quality  image,  and  converges  at the end  towards  a  completely  blurred  image,  with
no structure  surviving  at the  end.  In anisotropic  diffusion,  one  important  question  is how  to  find  boundary
between  the  under-smoothing  and  over-smoothing  regions  of  the  anisotropic  diffusion  process.  The
entropy  change  is found  to be one  such  measure  to  describe  that  boundary  adequately  and  thus  provides
a  reasonable  stopping  rule  for anisotropic  diffusion.  Numerical  experiments  with  test  pattern  images
confirm  the  desirable  qualities  of  gap-closing  and  flow-enhancing  qualities,  along  with  the  identification
of  frontier  of  useful  smoothing.  The  proposed  scheme  is  evaluated  with  the  help  of simulated  images,
and  compared  with  other  state  of the  art  schemes  using  an  objective  criterion.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Image smoothing and denoising is one of most fundamental
and important image processing techniques. The basic principle of
image denoising is to filter the noise by some kind of filter, and keep
the original image content (especially fine structures, such edges
and lines) as intact as possible [1,2]. In many image processing
problems, we often come across the enhancement of elongated
structures, such as ridges, edges, and oriented texture patterns in
noisy images [3–6]. One classic example that can be cited is the case
of enhancing noisy image data [7–9]. Many methods, proposed in
the literature, are based on implementing a non-linear anisotropic
diffusion equation on noisy images. The idea was  pioneered by
Nitzbeg and Shiota [10] and Cottet et al. [11]. Later on, Weickert
[12] put forward a formal method for enhancing elongated struc-
ture, referred to as Coherence Enhanced Diffusion (CED). The CED
works by steering the diffusion process in a particular direction
with the help of a diffusion tensor. The design was  further gener-
alized by adopting a diffusion matrix to learn the local structure
iteratively [13].

The basic idea of CED is to smooth a degraded image by apply-
ing a repeated nonlinear diffusion process. The diffusion tensor
of nonlinear diffusion process allows anisotropic smoothing by
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acting mainly along the preferred structure direction. This so-called
coherence orientation is determined by the eigenvector of the
structure tensor with the smallest eigenvalue. Anisotropic diffusion
is normally implemented using an approximation of the general-
ized diffusion equation. The new image in the family is computed
by applying this equation to the previous image. Consequently,
anisotropic diffusion becomes an iterative process where a rela-
tively simple set of computation is used to compute each successive
image in the family. This process is continued until a sufficient
degree of smoothing is obtained. The CED process initializes with a
noisy image and converges to a constant image. Thus, we have an
under-smooth situation that ultimately turns into an over-smooth
one.

Overestimating the stopping time will result in an over-
smoothed blurry image while under-estimating it may leave the
noise in the image unfiltered. Therefore, it is crucial that an appro-
priate time is selected in an automatic way. The activity in literature
can be divided into two  broad categories. One deals with an additive
noise model. Treating the noisy image as the result of noise addi-
tion, they try to stop the diffusion where the correlation between
the diffused image and the initial noisy image minimizes [12]. The
authors in [14] introduced a multigrid algorithm using a normalized
cumulative periodogram. A frequency approach to the problem was
presented in [15]. Whereas, [16] uses the extent of noise smoothing
in every iteration as a stopping parameter for diffusion. Later on, a
spatially varying stopping method was  introduced that increased
the computational cost significantly [17]. By identifying it as a
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Lyapunov functional of a large class of scalar-valued nonlinear dif-
fusion filters, Weigert [18] introduced decreasing the variance of
an image as a stopping tool. The second category deals with exam-
ining the entropy of the diffused image, and a stopping criterion
was developed to deal with its distance from the entropy of the
original noisy image [12]. Our research work also introduces a new
stopping rule based on changes in entropy of the diffused image
as it evolves. Since the change in entropy is related to information
loss that results when an image structure is disturbed, we  propose
that a maximum entropy change may  be a good stopping time for
the diffusion process.

The rest of this paper is organized as follows. In Section 2, coher-
ence enhanced diffusion is discussed. The discrete image as a spatial
distribution is described in Section 3. Section 4 is about the entropy
of coherence enhanced diffusion followed by Results and discussion
in Section 5. Finally the paper is concluded in Section 6.

2. Coherence enhanced diffusion

Consider an input image L(x, y). The anisotropic scale-space for
the image L(x, y) can be constructed by realizing the heat equation,
given by:

∂tL = ∇(D∇L), (1)

where D is the 2 × 2 diffusion matrix, adapted to the local image
structure, via a structural descriptor, called the second-moment
matrix �, defined as:

S =
(

s11 s12

s12 s22

)
=
(

L2
x,� Lx,�Ly,�

Lx,�Ly,� L2
y,�

)
, (2)

where L2
x , LxLy and L2

y represents the gaussian derivative filters, in
the x and y directions. This symmetric 2 × 2 matrix has two  domi-
nant eigenvalues �1 and �2, given by:

�1 = 1
2

(s11 + s12 + ˛),

�2 = 1
2

(s11 + s12 − ˛),

(3)

where

 ̨ =
√

(s11 − s22)2 + 4s122. (4)

Since the eigenvalues integrate the variation of the gray values
within a neighborhood, they describe the average contrast in the
eigen directions v and w. With the help of the eigenvalues of the
structure matrix a useful information can be obtained on the coher-
ence. The expression (�1 − �2)2 is large for anisotropic structures
and tends to zero for isotropic structures, while constant areas are
characterized by �1 = �2 = 0, straight edges by �1 � �2 or �2 � �1,
corners by �1 = �2 � 0, and the flat region by �1 = �2 ≈ 0.

These eigenvalues are associated with their respective eigen-
vectors. The first normalized eigenvector can be written as (cos �,
sin �)T, and the second orthogonal eigenvector comes out as (− sin �,
cos �)T. The parameter � represents the orientation field of the given
image. The orientation of the eigenvector corresponding to the
smaller eigenvalue �2 is called coherence orientation. This orien-
tation has the lowest fluctuations. The eigenvalues of the diffusion
matrix are assembled as

�1 = c1

�2 =

⎧⎪⎨
⎪⎩

c1 if �1 = �2;

c1 + (1 − c1) exp

(
c2

(�1 − �2)2

)
else,

(5)

where 0 < c1 � 1 and c2 > 0.

Fig. 1. This graph shows the monotonic decreasing behavior of CED.

The diffusion matrix D can be reconstructed with help of its
eigenvalues and eigenvectors as:

d11 = �1cos2� + �2sin2�

d12 = (�1 − �2) sin � cos �

d22 = �1sin2� + �2cos2�

(6)

Once the diffusion matrix is constructed, the evaluation process is
set to start. The diffusion process proceeds in four steps.

1. Calculate the second-moment matrix for each pixel.
2. Construct the diffusion matrix for each pixel.
3. Calculate the change in intensity for each pixel as ∇(D ∇ L).
4. Update the image using the diffusion equation as:

Lt+�t = Lt + �t  × ∇(D∇L) (7)

The above four steps are iterated under a given stopping rule.
The question that always arises in the diffusion process is

where to stop. The stopping rule for the diffusion process can
be defined in terms of measures that reveal monotonic behavior
as we  move deeper into the evaluation process. By identifying it
as a Lyapunov functional of a large class of scalar-valued nonlin-
ear diffusion filters, Weickert [18] has shown that the variance
�2(Lt) is indeed one such measure that is monotonously decreas-
ing. This monotonic decreasing behavior is also evident in the
graph depicted in Fig. 1. What can be seen from the graph is
that it is fast decreasing at the beginning, but towards the end,
it becomes saturated, providing convergence. Thus, by bounding
the relative change at the variance one can define the diffusion
stopping rule. However, this rule does not guarantee an optimal
time to stop the process. It is based on the user defined ratio
of diffused image variance to that of initial image variance. This
ratio might be useful if we  want to compare various different dif-
fusion schemas, but its utility, to provide a well-diffused image
with all the important structure cleaned but in-tact, may  be lim-
ited.

3. A discrete image as spatial distribution

Consider a discrete image L(x, y), where x is the row index and y is
the column index. This discrete image can be realized as a spatially
distributed light intensity [19]. Each spatial location, that is (x, y) in
the image, registers the number of light quantum-hit. In this way
we may  define

p(x, y) = L (x, y)∑
x

∑
yL(x, y)

(8)
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