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a  b  s  t  r  a  c  t

Semi-supervised  learning  has  attracted  significant  attention  in  pattern  recognition  and  machine  learn-
ing.  Among  these  methods,  a very  popular  type  is semi-supervised  support  vector  machines.  However,
parameter  selection  in  heat  kernel  function  during  the learning  process  is  troublesome  and  harms  the
performance  improvement  of  the  hypothesis.  To  solve  this  problem,  a  novel  local  behavioral  searching
strategy  is  proposed  for semi-supervised  learning  in  this  paper.  In detail,  based  on  human  behavioral
learning  theory,  the support  vector  machine  is regularized  with  the  un-normalized  graph  Laplacian.
After  building  local  distribution  of  feature  space,  local  behavioral  paradigm  considers  the  form  of  the
underlying  probability  distribution  in  the neighborhood  of a  point.  Validation  of  the  proposed  method  is
performed  with  toy  and  real-life  data  sets.  Results  demonstrate  that compared  with  traditional  method,
our  method  can  more  effectively  and  stably  enhance  the  learning  performance.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Semi-supervised learning has attracted a significant interest in
pattern recognition and machine learning. It exploits unlabeled
data in addition to the limited labeled ones to improve the learning
performance [1]. Many semi-supervised learning algorithms have
been proposed during the past decade, among which a very popular
type of algorithms is the semi-supervised support vector machines
(S3VMs).

Examples of this type include the semi-supervised SVM [2], the
transductive SVM (TSVM) [3], and the Laplacian SVM [4]. S3VM
and the TSVM are built upon the cluster assumption and use the
unlabeled data to regularize the decision boundary. Specifically,
these methods prefer the decision boundary to pass through low-
density regions [5]. The Laplacian SVM is a S3VM that exploits the
data’s manifold structure via the graph Laplacian. It encodes both
the labeled and unlabeled data by a connected graph, where each
instance is represented as a vertex and two vertices are connected
by an edge if they have large similarity. The goal is to find class
labels for the unlabeled data such that their inconsistencies with
both the supervised data and the underlying graph structure are
minimized.

However, while many efficient SVM methods have been devel-
oped for supervised learning, S3VMs still suffer from inefficiency
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issues. In particular, the optimization problem of Bennett and Dem-
iriz’s S3VM is formulated as a mixed-integer programming problem
and so is computationally intractable in general. TSVM, on the other
hand, iteratively solves standard supervised SVM problems. How-
ever, the number of iterations required may  be large since the TSVM
is based on a local combinatorial search that is guided by a label
switching procedure. Unlike the TSVM, the Laplacian SVM focuses
on regularization in reproducing Kernel Hilbert spaces and only
needs to solve one small SVM with the labeled data. But Lapla-
cian SVM utilizes heat kernel weights to form edge weights when
constructing data adjacency graph. The performance of heat kernel
weights highly depends on parameter selection and how to exactly
fix parameter in different applications may  be troublesome.

Currently, Defense Advanced Research Projects Agency (DARPA)
is soliciting innovative research proposals in the area of machine
learning for electronic warfare applications and sets up the Behav-
ioral Learning for Adaptive Electronic Warfare (BLADE) program
[6] in 2010. At the same time, more and more research fruits
hold the viewpoint that human behavioral learning can effectively
improve the performance of machine learning [7–9]. Inspired by
these booming trends, we propose a novel approach called Local
Behavioral-based Laplacian SVM (LB-LapSVM) to overcome the
problem of parameter selection in Laplacian SVM.

The rest of this paper is organized as follows. Section 2 briefly
describes the semi-supervised learning framework and its exten-
sion in Laplacian SVM. Section 3 presents the local behavioral
searching method and its utility in LB-LapSVM. Section 4 performs
extensive experiments on toy data sets and real communication
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radio data sets. Finally, we provide some concluding remarks and
suggestions for future work in Section 5.

2. Related work

Inspired by the success of large margin principle, S3VMs are
extensions of supervised SVMs to semi-supervised learning by
simultaneously learning the optimal hyperplane and the labels for
unlabeled instances. It was disclosed that S3VMs realize the low-
density assumption by favoring the decision boundary going across
low-density regions.

2.1. Semi-supervised learning framework

Formally, considering binary classification in semi-supervised
learning, we are given a set of l labeled samples {xi, yi}l

i=1, and a

set of u unlabeled samples {xi}l+u
i=l+1, where xi ∈ R

N and yi ∈ {−1,
+ 1}. Let us now assume a general-purpose decision function f. The
regularized functional to be minimized is defined as:

f ∗ = arg min
f ∈�K

1
l

l∑
i=1

V(xi, yi, f ) + �A

∥∥f
∥∥2

K
+ �I

∥∥f
∥∥2

I
(1)

where V represents a generic cost function of the committed errors
on the labeled samples, �K is a reproducing kernel Hilbert space
(RKHS) induced by the kernel. �A controls the complexity of f in the
associated Hilbert space �K, and � I controls its complexity in the
intrinsic geometry of the marginal data distribution. For example,
if the probability distribution is supported on a low-dimensional

manifold,
∥∥f
∥∥2

I
penalizes f along that manifold I. Note that this func-

tional constitutes a general regularization framework that takes
into account all the available knowledge.

2.2. Laplacian SVM

The previous semi-supervised learning framework allows us to
develop many different algorithms just by playing around with the

loss function, V, and the regularizes,
∥∥f
∥∥2

. In this paper, we focus on
the Laplacian SVM formulation, which basically uses a SVM as the
learner core and the graph Laplacian for manifold regularization.

2.2.1. Cost function of the errors
The Laplacian SVM uses the same hinge loss function as the

traditional SVM:

V(xi, yi, f ) = max{0, 1 − yif (xi)} (2)

where f represents the decision function implemented by the
selected classifier.

2.2.2. Decision function
We use as the decision function f (x∗) =

〈
w, �(x∗)

〉
+ b, where

�(·) is a nonlinear mapping to a higher (possibly infinite) dimen-
sional Hilbert space �, and w and b define a linear regression in that
space. By means of the Representer Theorem [10], weights w can be
expressed in the dual problem as the expansion over labeled and
unlabeled samples w =∑l+u

i=1˛i�(xi) = �˛, where � = [�(x1), . . .,
�(xl+u)]T and � = [˛1, ..., ˛l+u]. Then, the decision function is given
by:

f (x∗) =
l+u∑
i=1

˛iK(xi, x∗) + b (3)

and K is the kernel matrix formed by kernel functions, K(xi, xj) =〈
�(xi), �(xj)

〉
. The key point here is that, without considering the

mapping � explicitly, a non-linear classifier can be constructed by
selecting the proper kernel. Also, the regularization term can be
fully expressed in terms of the kernel matrix and the expansion
coefficients:∥∥f
∥∥2

K
= ‖w‖2 = (��)T(��) = �TK� (4)

2.2.3. Manifold regularization
The geometry of the data is modeled with a graph in which

nodes represent both labeled and unlabeled samples connected by
weights Wi,j. Regularizing the graph follows from the smoothness
(or manifold) assumption and intuitively is equivalent to penal-
ize the “rapid changes” of the classification function evaluated
between close samples in the graph:

∥∥f
∥∥2

I
= 1

(l + u)2

l+u∑
i,j=1

Wij(f (xi) − f (xj))
2 = fTLf (5)

where L = D − W is the graph Laplacian, D is the diagonal degree
matrix of W given by Dii =

∑l+u
j=1Wij , and f = [f(x1), . . .,  f(xl+u)]T = K�,

where we have deliberately dropped the bias term b.
The LapSVM algorithm is summarized in the Table 1.
From Table 1, we can clearly see that when LapSVM computes

edge weights, heat kernel weights Wij = e
−
∥∥xi−xj

∥∥2
/4t

are utilized.
The value of t varies in different applications. Unsuitable value of
t can lead to a serious decline in performance. What’s more, when
computing edge weights, heat kernel weights only focus on sam-
ple xi and xj. However, plenty additional information remained to
improve affinity measuring. From the above analysis, we proposed
a novel method called LB-LapSVM.

3. Local behavioral searching

In many real-life situations, human are exposed to a combina-
tion of labeled data and far more unlabeled data when they need to
make a classification decision. Understanding how human combine
information from labeled and unlabeled data to draw inferences
about conceptual boundaries can have significant social impact. In
the realistic setting where labeled and unlabeled data are avail-
able, semi-supervised learning offers very explicit computational
hypotheses that can be empirically tested in the laboratory. To
help understand description in this section, we  start by providing
a “translation” of relevant terms from semi-supervised learning to
human behavioral learning:

That is, when stimulus arrives, human use their supervised
experiences from teachers and passive experiences from nature to
complete concept learning task. During the learning task, human
take in to account of some mechanism in their mind. When concept
category is obtained, the learning task is done.

Inspired by above analysis, we  applied human behavioral learn-
ing strategy to LapSVM. In detail, when computing affinity between
sample xi and xj, LapSVM only focuses on sample xi and xj. How-
ever, it’s not the case in human behavior. Given a pair of samples, in
human empirical cognition, local neighborhood of this pair samples
plays an important role in affinity measuring. Based on local distri-
bution of feature space, human behavioral paradigm considers the
form of the underlying probability distribution in the neighborhood
of a point.

Instead of selecting a single parameter t in heat kernel weights,
we propose to calculate local behavioral parameters �i and �j for
data points xi and xj. The distance from xi to xj as “seen” by xi is
d(xi, xj)/�i while the converse is d(xj, xi)/�j. Therefore, the square
distance d2 may  be generalized as d(xi, xj)d(xj, xi)/�i�j = d2(xi,
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