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a  b  s  t  r  a  c  t

In this  paper,  complex  hybrid  synchronization  of network  coupled  with  complex-variable  chaotic  systems
is investigated.  The  complex-variable  dynamical  network  is  synchronized  onto  a given  orbit  with  respect
to a complex  matrix  using  impulsive  control.  Adaptive  strategy  is adopted  to  design  adaptive  impulsive
controllers,  which  is  universal  for different  dynamical  networks.  Further,  it can relax  the  restriction  on
impulsive  intervals.  Based  on  impulsive  stability  theory  and Lyapunov  function  method,  several  syn-
chronization  criteria  for achieving  complex  hybrid  synchronization  are derived.  Numerical  examples  are
provided to  show  the  effectiveness  of the  theoretical  results.
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1. Introduction

In recent years, many kinds of projective synchronization with
respect to constant matrices are introduced for better explain-
ing the complex phenomenon in complex network coupled with
dynamical systems. Complete synchronization [1–7] and anti-
synchronization [7,8] are two special projective synchronization
manners with respect to identity and negative identity matrices.
Projective synchronization is obtained if the matrix is chosen as
scalar matrix [9–12]. Specially, hybrid projective synchronization is
achieved if the matrix is chosen as general diagonal matrix [13–15].
In [14], adaptive hybrid projective synchronization of two  different
chaotic systems with respect to a diagonal matrix is studied.

Recently, many complex-variable chaotic and hyperchaotic sys-
tems are introduced for better describing the physical systems
processes and the synchronization of coupled complex-variable
chaotic systems are well investigated [16–22]. In Refs. [16–18],
complex-variable Lorenz system is introduced and used to describe
and simulate rotating fluids and detuned laser. In [19], the complex-
variable Chen and Lü systems are introduced and the global
synchronization are studied via active control. In [20], the hybrid
projective synchronization in chaotic complex dynamical system
with respect to a scaling matrix is studied. In [22], the synchroniza-
tion of dynamical network coupled with complex-variable chaotic
systems is studied.
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All the projective factors in the above synchronization are
real number or real matrix, which means that the drive-response
systems evolve in the same or inverse direction simultaneously.
However, for complex-variable dynamical systems, the drive-
response systems may evolve in different directions with a constant
intersection angle in complex space. That is to say, the projective
factors can be complex numbers or matrices. In [23], the complex
projective synchronization of coupled complex-variable chaotic
systems with respect to complex number is investigated. In [24],
the complex hybrid synchronization in drive-response complex-
variable chaotic systems with respect to complex diagonal matrix
is considered. On the other hand, impulsive control method has
been widely used to design proper controllers for achieving syn-
chronization of coupled dynamical systems [25–31].

Motivated by the above discussions, in this paper, the com-
plex hybrid synchronization of dynamical network coupled with
complex-variable chaotic systems is investigated via impulsive
control. Noticeably, adaptive strategy is adopted to design adaptive
impulsive controllers, which is universal for different dynami-
cal networks and can relax the restriction on impulsive intervals.
According to impulsive stability theory and Lyapunov function
method, several sufficient conditions for achieving complex hybrid
synchronization are provided and verified by numerical examples.

The rest of this paper is organized as follows. Section 2 intro-
duces the model and some preliminaries. Section 3 studies the
complex hybrid synchronization of complex-variable dynamical
network through designing proper impulsive controllers. Section 4
provides several numerical simulations to verify the effectiveness
of the theoretical results. Section 5 concludes this paper.
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Notation Throughout this paper, for symmetric matrix M, the
notation M > 0 (M < 0) means that the matrix M is positive definite
(negative definite). For any complex number (or complex vector) x,
the notations xr and xi denote its real and imaginary parts respec-
tively and x̄ denotes the complex conjugate of x.

2. Model and preliminaries

Consider a network consisting of N individuals indexed by k = 1,
2, . . .,  N, described by a complex-variable chaotic system

ẋk(t) = f (xk(t), zk(t)),

żk(t) = g(xk(t), zk(t)),
(1)

where xk(t) = (xk1(t), xk2(t), . . .,  xkm(t))T ∈ Cm is an m-dimension
complex state vector with xkl(t) = xr

kl
(t) + jxi

kl(t), l = 1, 2, . . .,  m

and j = √−1, zk(t) = (zk1(t), zk2(t), . . .,  zkn(t))T ∈ Rn is an n-dimension
real state vector. f : Cm × Rn → Cm is a complex-valued vector func-
tion and g : Cm × Rn → Rn is a real-valued vector function.

Let Xk(t) = (xT
k
(t), zT

k
(t))

T
be the state variable of the kth node,

and F(Xk(t)) = (f T (xk, zk), gT (xk, zk))
T

be the node dynamics. The
complex-variable dynamical network can be described by

Ẋk(t) = F(Xk(t)) +
N∑

l=1

akl�Xl(t), (2)

where k = 1, 2, . . .,  N, � = diag(�1, �2, . . .,  �m+n) ∈ R(m+n)×(m+n) is inner
coupling matrix. A = (akl) ∈ RN×N is the zero-row-sum outer coupling
matrix, which determines the topology of the network, defined as:
if node k is affected by node l (l /= k), then akl /= 0; otherwise, akl = 0.

Let s(t) be a solution of an isolated node satisfying ṡ(t) = F(s(t)),
and H = diag(h1, h2, . . .,  hm+n) with h� = ej� for 1 ≤ � ≤ m and h� = 1
for m + 1 ≤ � ≤ m + n, where � ∈ [0, 2�).

Definition 1. Network (2) is said to achieve complex hybrid syn-
chronization with respect to complex matrix H, if

lim
t→∞

‖Xk(t) − Hs(t)‖ = 0, k = 1, 2, . . .,  N.

The objective here is to achieve the complex hybrid syn-
chronization of network (2) through designing proper impulsive
controller. Then, the network (2) with impulsive controllers can be
written as

Ẋk(t) = F(Xk(t)) +
N∑

l=1

akl�Xl(t), t /= t�,

Xk(t+
� ) = Xk(t−

� ) + b�(Xk(t) − Hs(t)), t = t�,

(3)

where � = 1, 2, . . .,  {t�} is a discrete constant set satisfying
0 = t0< t1 < · · · < t� < · · ·,  t�→ ∞ as �→ ∞,  Xk(t+

� ) = lim
t→t+

�

Xk(t), Xk(t−
� ) =

lim
t→t−

�

Xk(t). b� ∈ (−2, 0) is impulsive gain at t = t� , and b� = 0 for t /= t� .

Any solutions of (3) are assumed to be left continuous at each t = t� ,
i.e., Xk(t�) = Xk(t−

� ).
Let ek(t) = Xk(t) − Hs(t) be the synchronization errors, then one

has the following error system

ėk(t) = F(Xk(t)) − HF(s(t)) +
N∑

l=1

akl�el(t), t /= t�,

ek(t+
� ) = (1 + b�)ek(t), t = t�.

(4)

For achieving the complex hybrid synchronization, the follow-
ing assumption and lemma  are needed.

Assumption 1. Suppose that there exists a positive constant L
such that the vector function F(Xk(t)) satisfies

(Xk(t) − Hs(t))T ¯(F(Xk(t)) − HF(s(t))) + (F(Xk(t))

− HF(s(t)))T ¯(Xk(t) − Hs(t)) ≤ L(Xk(t) − Hs(t))T ¯(Xk(t) − Hs(t)), (5)

where k = 1, 2, . . .,  N .

Lemma  1. [23] For any two complex numbers  ̨ and ˇ, and any real
constant � > 0, the following inequality holds:

˛ ¯̌
 + ¯̨  ̌ ≤ �  ̨ ¯̨  + �−1ˇ ¯̌ .

3. Complex hybrid synchronization

In this section, some sufficient conditions for achieving the
complex hybrid synchronization of complex-variable dynamical
network (3) are derived.

In what follows, let e(t) = (eT
1(t), eT

2(t), . . .,  eT
N(t))

T
, 	� = t� − t�−1

be the impulsive intervals, ˇ� = (1 + b�)2 for � = 1, 2, . . .,  and 
1 be
the largest eigenvalue of (A + AT) ⊗ �.

Theorem 1. Suppose that Assumption 1 holds. If there exists a con-
stant  ̨ > 0 such that the following conditions

ln ˇ� +  ̨ + (L + 
1)	� < 0, � = 1, 2, . . .,  (6)

hold, then the complex hybrid synchronization of network (3) can be
achieved.

Proof. Consider the following Lyapunov function

V(t) =
N∑

k=1

eT
k (t) ¯ek(t).

When t /= t� , the derivative of V(t) with respect to t along the
trajectories of (4) is

V̇(t) =
N∑

k=1

(eT
k (t) ¯ėk(t) + ėT

k (t) ¯ek(t))

=
N∑

k=1

(eT
k (t) ¯(F(Xk(t)) − HF(s(t))) + (F(Xk(t)) − HF(s(t)))T ¯ek(t))

+
N∑

k=1

N∑
l=1

akl(e
T
k (t)� ¯el(t) + eT

l (t)� ¯ek(t)).

Then, according to Assumption 1, one has

V̇(t) ≤ LeT (t) ¯e(t) + eT (t)((A + AT ) ⊗ �) ¯e(t) ≤ (L + 
1)eT (t) ¯e(t),

which gives

V(t) ≤ e(L+
1)(t−t�−1)V(t�−1), t ∈ (t�−1, t�). (7)

When t = t� , one has

V(t+
� )=

N∑
k=1

eT
k (t+

� ) ¯ek(t+
� )=(1 + b�)2

N∑
k=1

eT
k (t−

� ) ¯ek(t−
� ) = ˇ�V(t−

� ). (8)

Combining inequalities (7) and (8), for positive integer �, the
following inequality can be proved according to mathematical
induction

V(t+
� ) ≤ V(t+

0 )
�∏

�=1

ˇ�e(L+
1)	� .

From conditions (6), one has

ˇ�e(L+
1)	� < e−˛, � = 1, 2, . . .
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