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a  b  s  t  r  a  c  t

The  effect  of  partially  non-orthogonal  basis  states  for several  intercept  and  resend  attacks  of  the
Bennett–Brassard  cryptographic  protocol  has  been  studied.  The  quantum  error  and  the  mutual  infor-
mation are  computed  for  arbitrary  angles  �  of the  non-orthogonal  basis  states.  It  is  found  that  the secure
information  depend  strongly  on  the  angle  �,  the  probability  of  intercepts  and  resend  attack  and  the
number  of  eavesdropper.  Besides,  it is  found  that  for  any  eavesdroppers  number  N ≥ 2,  the  protocol  is
more secured  for (�/2)  <  � <  (3�/2),  while  for N  =  1, the  protocol  is  more  secured  for  �  =  �/2  or  3�/2  which
correspond  to  the  totally  orthogonal  basis  states.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

In practice, all the protocols of quantum cryptography using
photon as carriers of information, because they are relatively easy
to produce, easy to handle and travel (very) quickly in optical fibers,
while suffering little attenuation. There are as many protocols as
properties on which encode information: polarization, amplitude,
phase, frequency and time. Historically, the first protocol to be
implemented is called BB84 [1].

The information is encoded in the polarization of single photons,
choosing two non-independent polarization bases for safety.

This protocol has undergone several variants [2,3], and has been
implemented many times. E91, another protocol [4], designed by
Artur Ekert, uses entangled states EPR polarization-encoded and
was developed independently of BB84. Both protocols are gener-
ally considered the founding protocols of quantum cryptography.
Other protocols use highly attenuated laser states, while perform-
ing a discrete measure (detectors or photon counters). Examples
include protocols DPS (differential phase shift) [5], where the infor-
mation is encoded in the successive phases of the pulses, but also
the protocols to frequency coding [6–8], and protocols to temporal
coding [9,10].

The quantum key distribution with several intercepts and
resend attacks [11] and cloning attack [12] with orthogonal bases
is studied in previous work. Also the channel effect on the quan-
tum key distribution with several intercept and resend attacks is
studied [13].
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Moreover, for the SARG04 key-distribution protocol, an optimal
attack of eavesdropper on the transmitted key is explicitly con-
structed for arbitrary angles between the basis states [14], and
quantum key distribution in a single photon regime with non-
orthogonal basis states is recently presented by Kronberg and
Molotkov [15] where an explicit optimal attack on the distributed
key has been constructed.

Our aim in this paper is to study both effects partially non-
orthogonal basis states and the multiple sequential intercept and
resend attacks on the security of the BB84 quantum key distribution
protocol.

The paper is organized as follows. The protocol is detailed in
Section 2. Section 3 is devoted to the results and discussion, while
Section 4 is reserved for the conclusion.

2. The protocol

2.1. The model

We  consider a set of two bases states a and b:
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In all the following we consider that those involved in commu-
nication operate using the bases {|0a 〉 , |1a 〉} and {|0b 〉 , |1b 〉}. It is
clear that 〈0a|1a 〉 = cos� and 〈0b|1b 〉 =0.

Alice sends a sequence of photons to Bob while choosing ran-
domly to send 1 or 0 by using one of the bases from a set of the
bases {|0a 〉 , |1a 〉} and {|0b 〉 , |1b 〉}. Bob measures each photon by
selecting random between two polarization analyzers. Between
them are several eavesdroppers, which intercept some photons
with probabilities ωi, measure the polarization by choosing ran-
domly an arbitrary base which one is characterized by �i. At the
photons place which they do not measure, they put randomly 0 or
1 in their chains of bits. Then, Alice and Bob exchange in a tradi-
tional way the bases which they used; they remove in their chain of
bits those exchanged in different bases. For studying the security of
information exchanged between two honest parties Alice and Bob,
we introduce the notion of mutual information and in this way  we
calculate the mutual information between Alice and Bob and the
mutual information between Alice and every eavesdropper.

2.2. The mutual information

The direct reconciliation information between Alice and Bob is
governed by the mutual information I(A, B) given by:

I(A, B) = 1 + PAB(0/0)Log2(PAB(0/0)) + PAB(1/0)Log2(PAB(1/0))

(4)

PAB(xB/xA) is the conditional probability that Bob receives a pho-
ton polarized (xB = 0;1) with respect that Alice sends a photon
polarized (xA = 0;1)

This probability is given by:
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PAB(0/1) = PAB(1/0) = 1 − PAB(0/0) (6)

While the mutual information I(A, Em) between Alice and the
mth eavesdropper Em is written as:

I(A, Em) = 1 + PAEm (0/0)Log2(PAEm (0/0))

+ PAEm (1/0)Log2(PAEm (1/0)) (7)

where, PAEm (xEm /xA) is the conditional probability that the eaves-
dropper copies a photon polarized (xEm = 0; 1) using an arbitrary
bases characterized by �m with respect that Alice sends a photon
polarized (xA = 0;1)
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Fig. 1. Phase diagram in the space (�, ω) showing the transition between secured
and unsecured information.

PAEm (0/1) = PAEm (1/0) = 1 − PAEm (0/0) (9)

In the case of many eavesdroppers the lost information between
Alice and Bob corresponds to the maximum information copied by
the entire eavesdroppers:

I(A, E) = Max
i=1,m

[I(A, Ei)] (10)

The error rate or the error probability Perr is given by [13,16,17]:

(11)Perr =
∑
xA,xB

|PAB(xA, xB)|ωi=0 − PAB(xA, xB)|ωi /=  0|

The secret information Is is an important parameter to study
security of a quantum cryptography protocol and it is given by:

Is = I(A, B) − I(A, E) (12)

The quantum error Qerr is the value of the error probability Perr

for which I(A, B) = I(A, E). However, for Perr < Qerr, I(A, E) < I(A, B),
while for Perr < Qerr, I(A, E) > I(A, B).

In the particular case, where the eavesdropper communicate
between them and try to intercept the same photon with identical
probability and using an identical base (ωi = ω and �i = �, for i = 1,
. . .,  N), Eqs. (5) and (8) become, respectively

PAB(0/0) = 1
2

[
1 +

(
1 − ω

2
sin2(�)

)N
]

(13)

PAEm (0/0) = 1
2

[
1 + ω

2
(1 + cos(�))

(
1 − ω

2
(1 + cos(�))

)m−1
]

(14)

And the error probability is given by:
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3. Results and discussion

In this section we will start with the effect of one eavesdropper
and we  will examine the mutual information between Alice and
Bob I(A,B) and the loosed information I(A,E). It should be noted that
the totally orthogonal basis states corresponds to � = �/2 or 3�/2.

The phase diagram (�, ω) presented in Fig. 1 shows the transi-
tion line between secured and unsecured area in the presence of
one eavesdropper. It is clear that the secure area depends strongly
on the basis states angle � and the attack probability ω and if
(�/2) < � < (3�/2) the information exchanged between Alice and
Bob is secured (i.e. I(A, B) > I(A, E)) independently of the attack prob-
ability ω.
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