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a  b  s  t  r  a  c  t

A  small  rectangular  laser  spot  has  been  widely  studied  for laser  processing  and  laser  repair  technology.
It  is usually  made  by  converging  the  input  beam  with  the  lens.  Faithful  reproduction  of the  laser  spot  is
dependent  on  NA  of  the  imaging  lens.  The  small  rectangular  spot  can be obtained  by  high NA  lens,  which
is  limited  by  many  factors,  such  as high  energy  loss  due  to  the  reflection  on the surface,  large  mass  and
volume,  and strong  sensitivity  to aberrations  and  misalignment.  On  the  other  hand,  the beam  cannot  be
faithfully  reproduced  because  of  the  diffraction  with  the  low  NA lens  which  has  no such  the  limitations.
One  of the  alternative  ways  to  produce  small  rectangular  profiles  by using  the  low  NA  lens  system  is  to
estimate  the  input  beam  profile  leading  to the  output  profile  of the  sharp  rectangular  shape.

Before  estimation,  we  first defined  spatially  broad  functions  that  did  not  contain  high spatial  fre-
quencies  and have  sharp  rectangular  cross-sectional  profile.  Then,  we  calculated  the  input  beam  profiles
leading  to these  functions  by the  inverse  diffraction  theory.  We  also  confirmed  that  the  quantization  for
realizable  input  beam  profile  could  not  much  affect rectilinearity  of  the  output  beam.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

The majority of applications of focused laser beams require
incoming beam shaping in order to enhance their performance.
The beam shaping has been accomplished by using the lens array
[1], the Levenson’s mask [2] and the DOE [3]. The careful control
of the focal spot is required in optical lithography, laser repair,
and laser-based material processing [4]. The laser repair technique
recovers defective products, and brings the cost reduction. Recti-
linear processing is in great demand for laser repair devices. We
present a method for obtaining a small rectangular spot in the
imaging system.

Imaging properties are determined by numerical aperture (NA)
of the imaging lens. Though high NA lens system can reproduce
sharp rectangular profile with micron order, it narrows the depth of
focus. A shallow depth of focus makes the alignment of processing
more difficult. In addition, the high NA lens system increases sur-
face reflection, the system complexity and processing cost. On
the other hand, low NA lens system has long depth of focus and
large working distance. However, it is impossible to produce sharp
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rectangular profile below micrometer-orders due to diffraction.
The low NA lens system has an optical transfer function with
low cut-off frequency, so that rejects the fine structure of the
object.

Therefore, as long as using the low NA lens system, a rectan-
gular aperture has become a reduced round rectangular intensity
profile in the image plane. One of the alternative ways to pro-
duce small rectangular profiles by using the low NA lens system
is to estimate the input beam profile leading to the output pro-
file with sharp rectangular shape. In usually, the flat top beam
has been extensively studied as a rectangular cross-section beam
[3,5]. However, the flat-top beam contains high spatial frequencies
with which beam spot tends to diverge by diffraction. Therefore,
we defined functions with narrow bandwidths and horizontally
rectangular cross-sections. Then, we  calculated the input beam
profiles leading to these functions by the inverse diffraction
theory.

In this paper, we  used the Rayleigh–Sommerfeld–Debye diffrac-
tion theory for calculation. We  introduce the band-limited angular
spectrum that decreases the error due to aliasing of the spectrum.
The inverse diffraction theory and the band-limited angular spec-
trum method were shown in Section 2. Section 3 explained some
definitions of the beam profile functions having narrow bandwidths
and rectangular cross-sections. Results in Section 4 shows the beam
profile that was  calculated by our method is superior to that of the
simple rectangle profile as an input.
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2. Theory

2.1. The Rayleigh–Sommerfeld–Debye formula of the inverse
diffraction

We  represent the input field as u–1 and the output field as u+1,
which satisfy the Helmholtz equation,

(∇2 + k2)us = 0, (s = −1, +1). (1)

It is known that there is a relation of the following equation
between the input field and the output field,

us(xs, ys, zs) =
∫ ∫ ∞

−∞

∫ ∫ ∞

−∞
u−s(x−s, y−s, z−s)

× exp
{

si
[
ks(xs − x−s) + ky(ys − y−s)

+ kz(zs − z−s)
]}

dkxdkydx−sdy−s (s = +1), (2)

where kz =
√

k2 − (k2
x + k2

y ), k = 2�/�. The symbols kx and ky are
wave numbers in the x and y directions, respectively. It is called as
a homogeneous wave at k2≥k2

x + k2
y , and is called as an inhomoge-

neous wave (evanescent wave) at k2 < k2
x + k2

y , in the input field.
If it is z+1 > z−1, the inhomogeneous component attenuates with
exp[− |kz|(z+1 − z−1)]. Therefore, the inhomogeneous wave can be
neglected if the distance of the input field and the output field is
away to some degree. As far as the inhomogeneous wave can be dis-
regarded, the input and the output are reversible relation. We  used
the Rayleigh–Sommerfeld–Debye formula of a diffraction integral
[6] as the inverse diffraction without the inhomogeneous compo-
nents, setting s = −1 in Eq. (2). Setting the sampling window to Sx

and Sy, and the sampling interval to �x  and �y,  we  discretize the
Eq. (2) as follows.

us(xs, ys, zs) = �x�y

SxSy

1/�x∑
kx=1

1/�y∑
ky=1

Sx∑
x−s=1

Sy∑
y−s=1

u−s(x−s, y−s, z−s)

× exp
{

is
[
kx(xs − x−s) + ky(ys − y−s)

+ kz(zs − z−s)
]}

, (3)

s = +1 and −1 represent the forward and the backward diffraction,
respectively.

2.2. The band-limited angular spectrum method

Eq. (2) can be decomposed into three equations by using the
angular spectrum. The angular spectrum of the field u−s at z = z−s is
given as:

U−s

(
kx, ky

)
= �x�y

Sx∑
x−s=1

Sy∑
y−s=1

u−s(x−s, y−s, z−s)

× exp{−si(kxx−s + kyy−s)}. (4)

Because this equation represents the discrete Fourier transform
of u–s, the fast Fourier transform can be applied. Next, the angular
spectrum U–s at z = zs is given by the following equation.

Us(kx, ky) = U−s(kx, ky)P(kx, ky) (5)

where P(kx, ky) = exp[sikz(kx, ky)(zs − z−s)] is called as the propaga-
tor. Finally, the field us at z = zs is given by the following equation.

us(xs, ys, zs) = 1
SxSy

1/�x∑
kx=1

1/�y∑
ky=1

Us(kx, ky) exp{si(kxxs + kyys)}. (6)

The fast Fourier transform can be also applied, since this equa-
tion represents the inverse discrete Fourier transform of us.

When the fast Fourier transform is used by the angular spec-
trum method, the areas of the sampling window in the input field
should be doubled in consideration of the periodism of data along
both x and y axes [7]. Though the angular spectrum method gives
an excellent result in the near-field region, its accuracy falls when
the distance exceeds about 10Sx or 10Sy. This error of the angu-
lar spectrum method cannot be avoided only by expanding the
sampling

window. Because the propagator P(kx, ky) vibrates very fre-
quently in significant value of kx and ky when |zs – z–s| grows, the
aliasing error is caused when discretizing it. Therefore, the propa-

Fig. 1. Example of the modified-sinc function. (a) Three dimensional intensity distri-
bution. (b) Horizontally cross-sectional profile clipped at 30% below to the intensity
top.
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