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A B S T R A C T

The growth of antimicrobial resistance presents a significant threat to human and animal health. Of particular
concern is multi-drug resistance, as this increases the chances an infection will be untreatable by any antibiotic.
In order to understand multi-drug resistance, it is essential to understand the association between drug re-
sistances. Pairwise associations characterize the connectivity between resistances and are useful in making
decisions about courses of treatment, or the design of drug cocktails. Higher-order associations, interactions,
which tie together groups of drugs can suggest commonalities in resistance mechanism and lead to their iden-
tification. To capture interactions, we apply log-linear models of contingency tables to analyze publically
available data on the resistance of Escheresia coli isolated from chicken and turkey meat by the National
Antimicrobial Resistance Monitoring System. Standard large sample and conditional exact testing approaches for
assessing significance of parameters in these models breakdown due to structured patterns inherent to anti-
microbial resistance. To address this, we adopt a Bayesian approach which reveals that E. coli resistance asso-
ciations can be broken into two subnetworks. The first subnetwork is characterized by a hierarchy of β-lactams
which is consistent across the chicken and turkey datasets. Tier one in this hierarchy is a near equivalency
between amoxicillin-clavulanic acid, ceftriaxone and cefoxitin. Susceptibility to tier one then implies suscept-
ibility to ceftiofur. The second subnetwork is characterized by more complex interactions between a variety of
drug classes that vary between the chicken and turkey datasets.

1. Introduction

Antimicrobial resistance is a serious threat to human and animal
health garnering much attention domestically and internationally. In
the US more than 2 million people a year contract an antibiotic resistant
infection (CDC, 2013). In the EU more than 25,000 people a year die
due to antibiotic resistant bacteria, based on data from the European
Commission Directorate-General on Health and Food Safety (2011). In
2011 The EU issued an action plan on antibiotic resistance, and the US
followed suit in 2015. Within the domain of antibiotic resistance an
especially concerning problem is that of multi-drug resistance as it may
increase the chances that there will be no therapeutic agent available to
treat a given infection, as in the case for several strains of gram negative
bacteria (Falagas et al., 2008). It is therefore essential to understand not
only resistance, but the dynamics of multi-drug resistance.

To gain a more complete picture of multi-drug resistance it is im-
portant to interrogate the associations between the various drug re-
sistances. One way to do this is to use genomic sequence data. Not all

resistance genes in a microbial genome are expressed, however, so
genetic linkage does not necessarily guarantee phenotypic linkage.
Similarly, not all resistance genes are yet known so a lack of genotypic
linkage does not necessarily guarantee a lack of phenotypic linkage.
Consequently, it is important to also investigate phenotypic associa-
tions. An understanding of phenotypic associations would provide
useful information for evaluating phenotypic information in the clinic.
It could also inform investigation of the biochemical and genetic me-
chanisms of multidrug resistance as well as shedding light on en-
vironmental factors driving the proliferation of the co-resistance phe-
notypes such as the joint resistance to cephalosporins resulting from
their common use in feedlots (Wagner et al., 2003).

One of the most comprehensive sources of data on antimicrobial
resistance in the United States is that collected by the National
Antimicrobial Resistance Monitoring System (NARMS) (NARMS, 2014).
Since 1996, NARMS, a collaboration among the United States Depart-
ment of Agriculture, Food and Drug Administration and Center for
Disease Control and Prevention, has been monitoring antimicrobial
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resistance in slaughter houses, retail meat, and human enteric bacteria.
It monitors antibiotic resistance of Escherichia, Enterococcus, Campylo-
bacter and Salmonella isolated from beef, chicken, turkey and pork at
slaughter and retail. Resistance is also monitored in human enteric
Campylobacter and Salmonella. NARMS reports resistance as Minimum
Inhibitory Concentrations along with guidelines for setting resistance
thresholds.

The NARMS findings are published each year in a summary report
(NARMS, 2014). This report covers overall trends in single drug re-
sistance, highlighting case studies of particular importance to human
and veterinary health. The report also follows multidrug resistance as
measured by resistance to three or more drugs regardless of the drugs
involved, and as the prevalence of known multidrug resistance phe-
notypes like ampicillin, chloramphenicol, streptomycin, sulfonamides,
tetracycline (ACSSuT). The report does not include any inference of
novel associations.

Because of the significance of the NARMS data our group has un-
dertaken a systematic reanalysis. Our first paper carried out an ex-
ploratory analysis of single drug resistance as measured both by con-
tinuous MIC and by dichotomous susceptibility/resistance showing that
resistance trends depended extensively on the source, antibiotic and
microbe being examined (Zawack et al., 2016). It documented the
differences between modeling the data as dichotomous vs continuous as
well as the effect of using different resistance thresholds. Finally, we
undertook a power analysis to determine how long it would take to
detect a change in resistance given current data. Our second paper
made use of Markov networks to infer associations between resistance
in Escherichia coli isolated from chicken (Love et al., 2016). This work
identified two subnetworks, one for the β-lactams and a second cov-
ering a mixture of drug classes.

In addition to our work using Markov networks a number of other
approaches have been applied to understanding phenotypic associa-
tions among resistances, often focusing on resistance of E. coli. An ex-
perimental determination of relationships between resistance in E. coli
was carried out by selecting cultures for resistance to a single antibiotic
and then measuring the resistance level of the resulting population to
other antibiotics (Imamovic and Sommer, 2013). Factor analysis and
principal component analyses have been used to identify relationships
between resistances in E. coli isolated from feedlot cattle (Wagner et al.,
2003). Additive Bayesian models have been applied to further resolve
the structure and direction of pairwise relationships between re-
sistances of E. coli isolated from pig pens (Ludwig et al., 2013) as well as
to learn relationships among resistance genes and resistance pheno-
types in Enterococcus faecalis isolated from retail chicken (Hidano et al.,
2015). All of these approaches have shown that multidrug resistance is
highly structured uncovering associations both within and between
drug classes. These include associations between the fluoroquinolones
ciprofloxacin and naladixic acid (Wagner et al., 2003) as well as be-
tween the amphenicol and tetracycline drug classes (Imamovic and
Sommer, 2013). Many of these relationships are also well supported
with previous genetic work such as that between the drugs sulfisoxazole
and streptomycin which are known to be combined in integrons
(Ludwig et al., 2013). While these methods allow for the discovery of
associations between antibiotics they do not provide information on the
structure of these associations. As an example, they do not differentiate
whether three drugs have independent pairwise associations or are all
jointly associated with one another.

Inferring both the identify of associations between resistances and
their structure directly from phenotypic data can be accomplished by
returning to first principals and comparing the probability of resistance
under various combinations of the resistance status of other drugs. If, as
shown in Table 1a, a microbe is resistant to drug X 10 out the 200 or 5%
of the time when it is susceptible to drug Y, but 100 out of the 200 or
50% of the time when it is resistant to drug Y, then we can conclude
there is a 2-way association between drugs X and Y. Such associations
can be visualized using a network or graph with drugs as nodes and

edges between drugs that share a 2-way association. By looking at
combinations of resistance and susceptibility for multiple microbes we
can infer associations between more than two variables. This is the case
in Table 1 if Table 1a is taken to be data for microbes susceptible to
drug Z and Table 1b is taken to be microbes resistant to drug Z. In
Table 1a, among isolates that are susceptible to drug Z, a microbe is
resistant to drug X 5% of the time when it is susceptible to drug Y and
50% of the time when it is resistant to drug Y. In Table 1b, among
isolates resistant to drug Z, a microbe is resistant to drug X 185 out of
200 or 92.5% of the time when it is susceptible to drug Y and 4 out of 4
or 100% of the time when it is resistant to drug Y. Since drug Z modifies
the relationship between drugs X and Y we conclude there is a 3-way
association between drugs X, Y, and Z. When there is an association
involving more than 2 drugs it is called an interaction.

The above approach provides a straightforward and intuitive way to
infer both associations and interactions. The tradeoff is that it requires
categorical data that can be arranged into contingency tables of counts.
The NARMS data can be put in such a form by making use of relevant
resistance cutoffs. On the one hand, such a categorization obscures
information about resistance away from the selected breakpoint. On the
other hand, it provides focused information about resistance at clini-
cally and/or epidemiologically relevant levels.

This paper examines the interaction structure of phenotypic anti-
biotic resistance patterns of E. coli isolated from chickens, and turkeys.
It does so by making use of log-linear models for contingency tables,
exact conditional testing, and Bayesian inference.

2. Materials and methods

2.1. The data set

For the purposes of this study the publically available data sheets
were downloaded from the NARMS website. Susceptibility status was
determined using the NARMS guidelines. The dataset consisted of iso-
lates collected from chickens and turkeys in the years 2011 through
2013. E. coli was chosen as the bacteria of interest since this both
maximized sample size and allowed for comparison with previous
work. In order to appear in the analysis a drug had to be present in
more than 80% of all samples, and a sample had to be tested for each
such drug. This resulted in a collection of 2601 isolates from chickens
and 1133 isolates from turkeys. All analyses were carried out in Python
(Van Rossum, 1995). Regressions were done using the Statsmodels
package (Seabold and Perktold, 2010). Hypothesis tests were done
using Scipy (Perez et al., 2011).

2.2. Log linear model

One standard way to infer interactions like that in Table 1 is using
log-linear models for contingency tables (Agresti, 2002, pp. 314). In
these models, the expected count in each cell of the table is modeled as
a function of the resistance and susceptibility pattern among the drugs.
For example, if there are three drugs (X, Y and Z), the most general

Table 1
Hypothetical contingency tables representing the counts for various susceptible/resistant
(S/R) combinations of three drugs X, Y and Z. Table 1a is for when drug Z is susceptible
and Table 1b is for when drug Z is resistant.

a) Y
S R

X S 190 100
R 10 100

b) Y
S R

X S 15 0
R 185 4
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