
Contents lists available at ScienceDirect

Environmental Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/etap

Research Paper

Estrogen-responsive gene networks in the teleost liver: What are the key
molecular indicators?

April Feswickb, Kelly R. Munkittrickc, Christopher J. Martyniuka,b,⁎

a Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida,
Gainesville, FL, 32611, USA
b Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
c Executive Director of Cold Regions and Water Initiatives, Wilfred Laurier University

A R T I C L E I N F O

Keywords:
Network analysis
Endocrine disruptors
Computational biology
Environmental toxicology
Teleost

A B S T R A C T

An overarching goal of environmental genomics is to leverage sensitive suites of markers that are robust and
reliable to assess biological responses in a range of species inhabiting variable environments. The objective of
this study was to identify core groups of transcripts and molecular signaling pathways that respond to 17alpha-
ethylinestadiol (EE2), a ubiquitous estrogenic contaminant, using transcriptome datasets generated from six
independent laboratories. We sought to determine which biomarkers and gene networks were those most robust
and reliably detected in multiple laboratories. Six laboratories conducted microarray analysis in pieces of the
same liver from male fathead minnows exposed to ∼15 ng/L EE2 for 96 h. There were common transcriptional
networks identified in every dataset. These included down-regulation of gene networks associated with blood
clotting, complement activation, triglyceride storage, and xenobiotic metabolism. Noteworthy was that more
than ∼85% of the gene networks were suppressed by EE2. Leveraging both these data and those mined from the
Comparative Toxicogenomics Database (CTD), we narrowed in on an EE2-responsive transcriptional network.
All transcripts in this network responded ∼ ± 5-fold or more to EE2, increasing reliability of detection. This
network included estrogen receptor alpha, transferrin, myeloid cell leukemia 1, insulin like growth factor 1,
insulin like growth factor binding protein 2, and methionine adenosyltransferase 2A. This estrogen-responsive
interactome has the advantage over single markers (e.g. vitellogenin) in that these entities are directly connected
to each other based upon evidence of expression regulation and protein binding. Thus, it represents an inter-
acting functional suite of estrogenic markers. Vitellogenin, the gold standard for estrogenic exposures, can show
high individual variability in its response to estrogens, and the use of a multi-gene approach for estrogenic
chemicals is expected to improve sensitivity. In our case, the coefficient of variation was significantly lowered by
the gene network (∼67%) compared to Vtg alone, supporting the use of this transcriptional network as a
sensitive alternative for detecting estrogenic effluents and chemicals. We propose that screening chemicals for
estrogenicity using interacting genes within a defined expression network will improve sensitivity, accuracy, and
reduce the number of animals required for endocrine disruption assessments.

1. Introduction

Biological responses in aquatic organisms to both single and com-
plex mixtures of chemicals have been quantified using a variety of
omics-based technologies (Bahamonde et al., 2015; Martyniuk et al.,
2012; Simmons et al., 2015), all of which have improved our under-
standing as to how aquatic organisms interface with their chemical
environment. In order to conceptualize these “Big Data”, bioinformatics
methods that include gene set enrichment (Shi and Walker, 2007;
Subramanian et al., 2005) and pathway analysis (Garcia-Reyero and

Perkins, 2011) are used in ecotoxicology to synthesize molecular data
into a biological interactome. Due to the significant number of studies
in ecotoxicology using omics methods, detailed descriptions of mole-
cular interactions are feasible within a biological network, generating
relationships that may prove useful for monitoring adverse responses in
complex environments.

A challenge for the wider acceptance of omics in risk assessment and
environmental monitoring programs has been the lack of data demon-
strating both reliability and consistency of omics data generated in the
hands of multiple users. Studies examining inter-laboratory variability
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using microarray data reveal that it is possible to detect the same dif-
ferentially expressed transcripts in different laboratories, thus there is
some congruence in laboratories for treatment-specific effects (Feswick
et al., 2017; Hockley et al., 2009; Vidal-Dorsch et al., 2015). However,
these studies also confirm the importance of standardization of
methods, including bioinformatics approaches, wherever feasible.
Moreover, technical variability and an array of statistical designs make
cross-laboratory comparisons difficult. As such, there is debate as to
whether or not these data are robust enough to be used in a regulatory
context (Bahamonde et al., 2016), and it is clear that variability in data
remains high enough to warrant caution in the interpretation of the
results. For example, Vidal-Dorsch et al. (2015); Feswick et al. (2017)
acknowledged that data were perhaps best interpreted when con-
sidering only those genes that were consistently identified as differen-
tially expressed by different laboratories (i.e. a gene network ap-
proach). The challenge has been to determine whether data from any
particular laboratory is reproducible without doing an a priori inter-
laboratory comparison for every experiment. However, as a research
community, we have reached a critical mass of information that allows
us to retrospectively hone in on central transcripts and pathways re-
sponsive to chemicals.

Inter-laboratory reproducibility has been acknowledged to be
highest when data analysis focused on identifying biological themes
defined by enriched Gene Ontology (GO) categories (Bammler et al.,
2005; Beyer et al., 2007; Zhang et al., 2013), and not based on gene-by-
gene comparisons. Thus, despite the variation present in transcriptomic
data, and regardless of the cause (i.e. technical, biological), the use of
hierarchical clustering is expected to reduce this variability and in-
crease confidence in the interpretation of the data. Moreover, the use of
enrichment software is immensely helpful for the biological inter-
pretation of omics data, and for the discovery of underlying molecular
mechanisms which drive the organismal response to chemical stressors.
For example, gene networks have been useful in characterizing the
ontogeny of human diseases, and in identifying specific molecular sig-
natures for neurodegeneration (Wang et al., 2016) and cancers (Liu
et al., 2015).

For these reasons, a priori identification of robust transcriptional
networks that are consistently identified as biologically responsive to a
given condition (i.e. hypoxia, chemicals) are expected to be more in-
formative than either the use of single biomarkers or genome-wide
transcriptional data. The use of a multi-gene network approach is ex-
pected to improve sensitivity by detecting subtle chemical exposures
because they reduce dependence on a single biomarker to quantify the
exposure. Drawbacks of using a single biomarker can be exemplified by
the egg yolk precursor protein vitellogenin (Vtg): although it is cur-
rently the most widely measured bioindicator of estrogenic exposure
(Folmar et al., 1996; Mellanen et al., 1999; Sumpter and Jobling, 1995)
in aquatic species, high individual variability in the expression of Vtg
makes the fidelity of such an estrogenic biomarker challenging at times.
For example, Biales et al. (Biales et al., 2007) tested the expression of
vtg in fathead minnows (FHM) following a 48 h exposure to 2.5 nM
17alpha-ethinylestradiol, and determined that 24 individuals were re-
quired to statistically discriminate between control and treatment
groups with a power of 80%. This was attributed to the high variability
in individual response, and the coefficient of variation of the normal-
ized quantities ranged from 15 to 50% across individuals. Feswick et al.
(2017) showed that the magnitude of Vtg response in FHM liver to
17alpha-ethinylestradiol in six laboratories varied significantly, with
fold change estimates for Vtg1 and Vtg3 ranging between 10 and 1000
fold depending on the laboratory. Thus, accurately quantifying the in-
duction of vtg across laboratories is a challenge from both a technical
and biological variability standpoint. Moving forward, quantifying es-
trogen-responsive gene networks may improve both accuracy and
sensitivity when monitoring effluent quality over site, time, and across
laboratories in small bodied fish. The objective of this study was to
identify core transcriptional networks in the liver that are responsive to

estrogens by leveraging data across six different laboratories as well as
resources from the Comparative Toxicogenomics Database.

2. Materials and methods

2.1. Experimental design for inter-genomics study

All experimental procedures described herein were approved by the
Animal Care Committee (protocol number 2013-3s-09) and carried out
at the Canadian Rivers Institute at the University of New Brunswick,
Saint John, NB, Canada. Full details on the experimental design can be
found in Feswick et al. (2017). Briefly, male FHMs aged 1.5 years were
exposed to 17alpha-ethiylestradiol for 96 h in a static renewal exposure
design (water was renewed every 24 h with 100% water change).
Measurements of EE2 verified that the mean concentration (± SEM) of
EE2 in the tanks was 15.67 ± 4.71 ng/L, and plasma Vtg levels were
4.0 ± 12.7 μg/mL for control males (n = 8) and 21,666 ± 1821 μg/
mL for EE2-treated males (n = 8), confirming a treatment effect and
biological response to the estrogen (Feswick et al., 2017). There were
no significant differences in body weight, body length, gonadosomatic
index, or hepatosomatic index between the control and EE2-treated
group.

Sixteen liver samples (8 control and 8 treated) were partitioned
equally and shipped on dry ice by courier in numbered (blinded) vials
to each of six laboratories with experience in microarray analysis. A
60 K probe fathead minnow microarray was used by each laboratory
and data are available in NCBI Gene Expression Omnibus (GPL15775
Agilent-036574 FHM_8 × 60K_V2, BioProject PRJNA321209). Gene
expression data were returned to the coordinating laboratory at
University of New Brunswick, and the methods for microarray analysis
were reported (Feswick et al., 2017).

2.2. Inter-laboratory comparison: pathways

Raw intensity data from each laboratory were imported one at a
time into JMP® Genomics v 7.0 (SAS Institute Inc., Cary, NC, USA).
Intensity data were normalized for each laboratory using quantile
normalization. Control probes were filtered out prior to identifying
differentially expressed genes (DEGs). Datasets were filtered to the
average intensity of the 8th Agilent spike across all spots and arrays
[(+)E1A_r60_a107 (spike 8)], the rationale being that, upon viewing all
quality control reports, the 8th spike was consistently the last point of a
linear standard curve. The limits of detection for intensity are provided
in Feswick et al. (2017). DEGs were identified using a one-way analysis
of variance (ANOVA) followed by a false discovery rate (FDR) set at
5.0%.

Data from each of the six laboratories were analyzed individually
for pathways. Pathway Studio 9.0 (Elsevier) and ResNet 10.0 were
utilized for sub-network enrichment analysis (SNEA) of cell processes
(Nikitin et al., 2003). The option of “Highest magnitude fold change,
best p value” in Pathway Studio was used for duplicated probes. A total
number of 37,169 fathead minnow probes were successfully mapped to
the program using the official gene name (Name + Alias). SNEA was
conducted to identify gene networks that were affected in the FHM liver
following EE2 exposure. Networks were constructed based upon
common regulators of cell processes. The enrichment P-value for a gene
seed was set at P < 0.05. Additional details on the use of SNEA can be
found elsewhere (Langlois and Martyniuk, 2013).

2.3. Transcriptional targets of 17β-estradiol: the comparative
toxicogenomics database

To compare our liver networks to that which is known in the lit-
erature, we extracted all the transcripts that have been reported to be
regulated by 17beta-estradiol (MeSH® ID, D004958) from the
Comparative Toxicogenomics Database (CTD). The CTD is a publicly
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