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A B S T R A C T

To make meaningful inferences based on our regression models, we must ensure that we have met the
necessary assumptions of these tests. In this commentary, we review these assumptions and those for
the t-test and analysis of variance, and introduce a variety of methods, formal and informal, numeric
and visual, for assessing conformity with the assumptions.
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The first thing that I like to do as an analyst, when I receive a data
set from a collaborator, is to poke around a bit, informally. I look to
see whether the data have been coded correctly; is, for example, the
body mass index truly a numeric variable or have words errantly wan-
dered into that column of the spreadsheet? Is the differentiation
between an unrecorded ankle-brachial index and incompressible veins
clear? Are there some strange values in the age variable, such as a neg-
ative age? One might argue that this process should be called “data
cleaning”; however, a more liberal view sees this as a first diagnostic
pass over the data. We are looking to diagnose whether the data are
even suitable for analytical purposes.

Once I am assured that the data are reasonable, in good order, and
that no egregious errors are present, I will perform the descriptive anal-
ysis of the data that I have doubtless planned with my collaborator.
These are the basic descriptions of means, medians, minima, and
maxima for continuous variables, and counts within categories for
discrete variables. More exploration, more cleaning … but, again, di-
agnostic in nature. If I notice that one of my several ankle-brachial
index categories has but a few patients, and I realize this will lead
to a difficult to interpret analysis or cause mathematical issues in the
multivariate tests, I will make some decisions about recoding vari-
ables. This is diagnosis, purchasing insurance, ensuring that I am not
walking into a minefield; perhaps a bit of prophylaxis, as well as
diagnostics.

Why do I mention these seemingly pedestrian explorations of data?
This is supposed to be a technical article about diagnostic tests. First,
as I have just suggested, I believe that these steps are, indeed, part

and parcel of the diagnostic analysis of data. Second, I hope to reinforce
that the act of performing an analysis does not consist of merely press-
ing a button and having a machine spit out a ticker tape of statistical
answers. Rather, the analytical process is one in which the investi-
gator and analyst are actively involved the whole way through, ensuring
that we are not committing an error of garbage in, garbage out.

Truly, the analysis is a journey of watchfulness from beginning to
end—from these initial examinations of the data to the final assess-
ments of whether our results have any real world meaning. Along the
way, we perform the specific diagnostic tests that are the subject of
this commentary: diagnostics designed, among other things, to assess
whether the assumptions of our statistical tests are met.

The Importance of Assumptions

The present commentary is the third in a series of 5 specifically
targeted at thinking about regression models and model selection. We
started the series by discussing the assumptions of statistical tests (1),
outlining the different assumptions for different families of tests, and
thinking about the problems that arise when we violate those as-
sumptions. Our second article put this in context by looking at the
goals for the models we might wish to build and what they are used
for: description, identification of risk factors, or prediction (2). Given
some of the tools that these 2 articles introduced, we are now in a
position to look back at our assumptions and consider further tools
that will allow us to determine whether they are met. In the next, our
last 2, commentaries, we will first look at predictive modeling and some
aspects thereof. Finally, we will conclude with an overarching dis-
cussion of how statisticians make model choices: given the goals of
the model one is building, how does one decide which variables are
appropriate to be included.

To recapitulate quickly, we noted in our first commentary on as-
sumptions that the Student t-test and analysis of variance (ANOVA)
relied on the following assumptions: normality of the data within each
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of the study groups, a common variance across all the study groups,
and independence of observations. Linear regression relies on the errors
in the model being normally distributed, having common variance at
each value of the independent variables, and independence of obser-
vations. We further require that the linear regression equation is linear
in the coefficients, although not necessarily linear in the variables, and
that the relationship being modeled is indeed linear. Whatever the
purpose for one using a model (2), meeting the assumptions is es-
sential. It does not, after all, matter for what purpose you are
constructing a building; if the foundations are not stable, the build-
ing will not stand.

We also revisit 2 technical points that we have made a few times.
First, it is not the populations underlying the groups studied using the
t-test or the samples themselves that we are studying, in particular,
and that were drawn from those populations, that we require to be
normal. Rather, it is a more complicated object, the sampling distri-
bution of the mean from the underlying populations that we require
to be normal. Not having this sampling distribution to hand—and,
absent the entire underlying population, we never will—we are content
to state that our assumption is that the samples we are examining are
normally distributed. Second, we do not have the errors in the linear
regression: the errors are the deviations of the observed data points
from the mean values predicted by the true model. This true model
is posited to exist in the universe; however, we will never see it, because
it is a theoretical object. Instead, we have the model estimated from
our sample of data and the deviations of the observed data from that
approximate model. These deviations are the residuals, and we assess
their normality, rather than that of the errors. A third wrinkle: usually
one tests the assumptions of a tool before using it. We can only examine
residuals once we have them, which occurs after we have built the
model and used the linear regression, whose very assumptions we
would like to check. Truly, then, diagnostic testing is part of our an-
alytical journey from beginning to end.

Assumptions of the t-Test and ANOVA

Normality

To discuss the most important of our assumptions, normality, we
first briefly consider the normal distribution. Although we all know
what the normal distribution looks like—the standard bell curve to
which we appeal when our college grades are not what we desire—
we are perhaps less familiar with the characteristics of that distribution
that make it useful for diagnostic testing. Of note, the bell curve is sym-
metric, the mean is the same as the median, and roughly 68% of the

distribution is within 1 standard deviation of the mean (Fig. 1A). These
are descriptive, not prescriptive, in that a distribution might have these
characteristics and still not be normal, but they are a useful starting
point. For example, if a distribution is asymmetric, or skewed, with
many more values in the right (or left) tail than in the left (or right),
it cannot be normal (Fig. 1B). Alternately, if a distribution has signifi-
cantly more (or less) than 68% of the data within 1 standard deviation
of the mean, it cannot be normal. We call such distributions leptokurtotic
or platykurtotic (Fig. 1C,D).

Plots for Assessing Normality

These descriptions inspire 2 visual tools for assessment of nor-
mality: the boxplot and the normal Q-Q plot. The boxplot will be
familiar to most readers, and examples are provided in Fig. 2. As the
legend for Fig. 2A indicates, the plot displays the maximum, minimum,
and median of the data, along with the first and third quantile. This
gives an impression of the overall distribution and symmetry of the
data. The plot also contains a notion of the spread of the data in the
adjacent points, which roughly encode the standard deviation of
the data. If our data are normal, we would expect the plot to be sym-
metric, and we would expect to see few points outside the adjacent
points.

The normal Q-Q plot is a plot of the observed data against the cor-
responding theoretical quantiles of a normal distribution. That is, we
plot the observed data on 1 axis, and, for each point in the data set,
we find and plot on the other axis that value in the normal distribu-
tion representing the same percentile as our original data point1.
Although this definition is involved, suffice to say that if the data are
normal, the points in the Q-Q plot will be on the 45° diagonal line
through the origin of the graph. Any severe deviation from this indi-
cates a lack of normality, and indeed with a trained eye, patterns of
skew or kurtosis can be derived by looking at such pictures. We give
examples in Fig. 3.

These are our first diagnostic tests. If we are running a t-test, we
separately plot the data in the 2 groups, in boxplots and Q-Q plots.
We look for the symmetric boxplots as described that are not too
“fat.” We look for our data to lie roughly on the 45° line in the Q-Q
plot. If we see serious violations of these requirements, we are led to
believe that our data are not normal.

1
We recall that for a given observation in a data set, the percentile corresponding

to that observation is the percentage of data in the data set with a smaller value than
the given observation.
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Fig. 1. Probability distributions. (A) A normal distribution, with the data within 1 standard deviation of the mean highlighted in gray. (B) The F distribution, an example of a
skewed distribution. (C) The Cauchy distribution, a leptokurtotic distribution. The normal is drawn on the same axes, as a dashed line. Note the “fat tails” of the Cauchy distri-
bution. (D) The uniform distribution, a platykurtotic distribution. The normal is drawn on the same axes, as a dashed line.
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