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a  b  s  t  r  a  c  t

Real-time  forecasts  of  infectious  diseases  can help  public  health  planning,  especially  during  outbreaks.
If  forecasts  are  generated  from  mechanistic  models,  they  can  be  further  used  to  target  resources  or to
compare  the  impact  of  possible  interventions.  However,  paremeterising  such  models  is  often  difficult
in  real  time,  when  information  on  behavioural  changes,  interventions  and  routes  of transmission  are
not readily  available.  Here,  we present  a semi-mechanistic  model  of infectious  disease  dynamics  that
was used  in  real time  during  the  2013–2016  West  African  Ebola  epidemic,  and  show  fits  to a  Ebola
Forecasting  Challenge  conducted  in late  2015 with  simulated  data  mimicking  the  true epidemic.  We
assess  the  performance  of  the model  in different  situations  and  identify  strengths  and  shortcomings  of
our  approach.  Models  such  as  the  one  presented  here  which  combine  the  power  of mechanistic  models
with  the  flexibility  to  include  uncertainty  about  the precise  outbreak  dynamics  may  be  an  important  tool
in combating  future  outbreaks.

© 2016  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Forecasting the incidence of infectious diseases is an important
part of public health and intervention planning. This was especially
true during the 2013–2016 West African Ebola epidemic, when the
rapid expansion of the outbreak triggered an enormous national
and international public health response in late summer 2014.
From November 2014, the Centre for the Mathematical Modelling
of Infectious Diseases (CMMID) at the London School of Hygiene
& Tropical Medicine produced weekly situation reports presenting
updates of publicly available epidemiological data, model fits and
forecasts, and estimates of key epidemiological parameters. These
reports were distributed to a wide range of public health planners,
policy makers, field workers and academics in several countries
by email, and were made publicly available on a dedicated web
site (Center for the Mathematical Modelling of Infectious Diseases,
2015).

The forecasts in these situation reports were produced using
a stochastic semi-mechanistic model of Ebola transmission
(Camacho et al., 2015b). The model was mechanistic in the sense
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that it relied on a compartmental description of the epidemio-
logical status of the population based on known aspects of Ebola
infection such as the incubation rate or infectious period. To model
transmission between individuals, however, we used a more phen-
omenological, stochastic approach. During an emergency such as
the Ebola epidemic, it is difficult to determine the precise factors
underlying disease transmission that are required to inform a fully
mechanistic model. Information about the relative importance and
intensity of transmission in the community, hospital or at funerals
(Faye et al., 2015), about the exact extent of control measures and
their impact (WHO  Ebola Response Team, 2015), about behavioural
changes in the community (Funk et al., 2014) as well as about
the potential role of seasonality (Groseth et al., 2007) or genetic
changes in the virus (Carroll et al., 2015) were not available in real-
time. To capture the overall change in transmission arising from
these different mechanisms, we modelled transmission between
individuals using a time-varying stochastic rate.

Capturing the uncertainty in transmission in a stochastic term
gives the model the flexibility to match the data in the presence
of noise and uncertainty. In addition, the inferred trajectories of
the transmission rate can directly be interpreted as change in the
reproduction number and thus provide valuable information for
decision makers, for example by indicating how far the outbreak is
from being under control.
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Fig. 1. Flow between compartments of the transmission model.

Here, we present model fits and forecasts generated as part of
the Ebola Forecasting Challenge conducted in 2015 after the true
epidemic had waned. The challenge was based on four scenarios of
synthetic data inspired from the outbreak in Liberia outbreak, with
increasing levels of noise and uncertainty (see Vespignani et al., in
this issue). We  used a similar model to the one used during the Ebola
epidemic fitted to the simulated outbreak trajectories generated as
part of the Challenge to produce forecasts of the number cases at
upcoming time points. We  particularly focus on methodological
issues and forecasting performance. We  report results on county-
level data of scenario 1, and assess forecasts at time points 1, 2, 4 and
5 (time points 3 was not considered for logistical reasons). Results
for the other scenarios are shown in the supplementary material.

2. Methods

Our semi-mechanistic model of Ebola dynamics is a modified
Susceptible-Exposed-Infectious-Recovered (SEIR) model, account-
ing for delays in notification and time-varying transmission (Fig. 1).
At time t, the force of infection experienced by susceptible indi-
viduals is �t = ˇtIt/N, where It is the overall number of infectious
individuals, N the population size and ˇt the time-varying trans-
mission rate which follows a random walk (Dureau et al., 2013):

d log ˇt = �dWt, (1)

Here, Wt denotes a Wiener process (Durrett, 1984), � the volatility
of the transmission rate and the log-transform ensures positivity
of ˇt. Modelling the time-varying transmission rate as a random
walk means it is auto-correlated: the transmission rate on any day
is most likely to be the same as on the previous one.

Upon infection at rate �t, susceptible individuals (S) move from
being exposed (E) to being infectious at a rate given by the recip-
rocal of the incubation period (1/Dinc). We  used two  exposed
sub-compartments in sequence to obtain an Erlang-distribution of
the incubation period with shape k = 2 (Lloyd, 2001), and split the
estimated initial number of exposed individuals evenly between
these two sub-compartments. To account for delays in repor-
ting of new cases, the infectious compartment was split into two
compartments representing infectious but not yet reported (C)
and infectious and potentially reported (Q) cases. The transition
between C and Q occurs at a randomly varying rate with a mean
equal to the reciprocal of the average reporting delay (1/Drep)
and 10% overdispersion following a Gamma  distribution. This
stochastic variation is introduced to capture non-independence
in the time until cases get reported, in order to capture situa-
tions where, for example, several members of the same family
might be reported simultaneously (Camacho et al., 2015b). Lastly,
infectious individuals are removed (R) when they recover or die
from the Q compartment at a rate equal to the reciprocal of the
difference between the infectious period and the reporting delay
(Dout = Dinf − Drep). The model can be formulated as a set of stochas-
tic differential equations which was simulated with the noise term
fixed for a time step of 1 day and a Runge–Kutta method solv-
ing the remaining ordinary differential components (Milstein and
Tretyakov, 2004). The only stochastic components are the trajec-
tory of the transmission rate and the reporting noise, in contrast
to the model used for the situation reports during the true Ebola
epidemic, which also included demographic noise.

The observation process was modelled to operate on the weekly
incidence (Zt), given by the number of infectious individuals enter-
ing the Q compartment. The observed incidence (Z̃t) was assumed

Table 1
Parameters used in the model and their values/ranges.

Parameter Value or prior
range

Description Source

Dinc variable Mean delay from
infection to symptoms

line list (where
available)

6 days (Camacho et al., 2014)
Drep 1 week Mean delay from

symptom onset to
notification

assumption

Dinf variable Mean delay from
symptom onset to
outcome

line list (where
available)

7.8 days (Camacho et al., 2014)
p  0.7 Proportion of cases

reported
(Camacho et al., 2014)

�  U(0,  0.5) Volatility of the
transmission rate

Fitted

� U(0,  0.5) Overdispersion in
reporting

Fitted

E� U(0,  5) Initial number of
exposed individuals

Fitted

R� U(0,  5) Initial reproduction
number

Fitted

to follow a normal approximation (chosen for computational
efficiency) to the negative binomial distribution with reporting
probability p and overdispersion �:

Z̃t∼N(pZt, p(1 − p)Zt + p2Z2
t �2). (2)

where standard deviations smaller than 1 were rounded up to
1 to avoid the singularity at Zt = 0. Note that stochastic variation
here captures variability in the probability that cases get reported,
whereas the stochastic variation acting on the transition from C to
Q captures variability in the delay until cases can get reported.

The model thus has 8 parameters, which we either estimated
from the line list of cases, took from a study on a pre-2014 out-
break of Ebola (Camacho et al., 2014), or estimated from model fits
process (Table 1). Prior ranges of the transmission rate volatility
and reporting overdispersion were established in preliminary runs
and chosen to be able to sufficiently capture sudden changes in
cases without allowing a degree of variation that would render the
algorithm unstable.

We used a Metropolis-Hastings particle Markov chain Monte-
Carlo (pMCMC) algorithm to sample from the joint posterior
distributions of the estimated parameters and states of the model
(i.e. the trajectories). In brief, at each MCMC  step, a particle filter
is used to estimate the likelihood of the proposed parameter set,
and to generate a sampled trajectory of the states of the model and
the transmission rate ˇt from their marginal posterior distribution
(Andrieu et al., 2010).

Our forecasts were generated under a “no change” hypothesis:
we assumed that the transmission rate would remain constant after
the last observed data point. More precisely, we sampled 10,000
parameter sets from the posterior distribution in combination with
the associated states and estimated values of ˇt at the last observed
data point, and simulated the model forward one year. The future
number of reported cases was generated by applying the obser-
vation process to the forecast incidence. Predicted reported peak
incidence, death counts and final sizes were calculated from the
sampled forecast observation trajectories. County-level forecasts
were obtained under the assumption that no transmission occurred
between counties.

Model fits were generated using a fully automated algorithm
applied to all the regional and national data sets as follows, imple-
mented to facilitate convergence of the computationally intensive
pMCMC  sampler and to avoid long burn-in and low effective
sample sizes: First, Metropolis-Hastings MCMC  was  run on the
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