Accepted Manuscript

Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens

Siddhesh B. Ghaq

PII: S0885-5765(17)30071-1

DOI: 10.1016/j.pmpp.2017.10.003


Reference: YPMPP 1289

To appear in: Physiological and Molecular Plant Pathology

Received Date: 1 March 2017
Revised Date: 7 October 2017
Accepted Date: 9 October 2017

Please cite this article as: Ghag SB, Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens, *Physiological and Molecular Plant Pathology* (2017), doi: 10.1016/j.pmpp.2017.10.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Host induced gene silencing, an emerging science to engineer crop resistance against
2	harmful plant pathogens
3	
4	Siddhesh B. Ghag ^{1*}
5	¹ UM-DAE Centre for Excellence in Basic Sciences, Kalina, Santacruz, Mumbai, India
6	*Corresponding author Email: siddhesh.ghag@cbs.ac.in
7	Tel: 91-22-26524978 Fax: 91-22-26524982
8	Abstract
9	RNA interference (RNAi) has rapidly progressed as one of the most important genetic tools to
10	understand gene function. Moreover, conservation of the RNAi machinery and pathway across
11	kingdoms enabled plant biotechnologists to engineer disease resistance in crop plants. This is
12	achieved by transforming the plant with double stranded RNA constructs targeting vital pathogen
13	genes or host susceptibility genes. The double stranded RNAs (dsRNAs) and small interfering
14	RNAs (siRNAs) generated in the transgenic host plant find their entry into the nematodes and
15	fungal pathogen, during interaction and subsequently cleave the cognate mRNAs. Numerous
16	studies conducted so far have demonstrated successful application of RNAi technology (termed
17	as HIGS) in plants to protect against a wide range of pests and pathogens such viruses, bacteria,
18	fungi, nematode and plant parasites and herbivorous insects that cause significant economic loss.
19	The present review emphasizes the potential of RNAi technology for developing crop plants
20	resistant to pests and pathogens.
21	
22	Keywords: HIGS, disease resistance, post transcriptional gene silencing, RNAi, dsRNA,
23	transgenic plants, silencing suppressors, CRISPR
24	
25	Introduction
26	Crop plants are susceptible to a wide array of pathogens including viruses, bacteria, fungi, insect
27	pests and nematode parasites that are responsible for huge economic losses (Oerke, 2006;
28	http://www.fao.org/docrep/008/y5800e/Y5800E06.htm). Management of these plant pathogens is
29	of utmost importance to feed the ever-increasing global population. Conventionally, three major
30	strategies are employed to manage plant diseases; crop rotation, application of chemical
31	pesticides and breeding for resistance. Crop rotation requires additional knowledge and skills,

Download English Version:

https://daneshyari.com/en/article/8649326

Download Persian Version:

https://daneshyari.com/article/8649326

<u>Daneshyari.com</u>