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A B S T R A C T

Investigation of the brain's functional connectome can improve our understanding of how an individual brain's
organizational changes influence cognitive function and could result in improved individual risk stratification.
Brain connectome studies in adults and older children have shown that abnormal network properties may be
useful as discriminative features and have exploited machine learning models for early diagnosis in a variety of
neurological conditions. However, analogous studies in neonates are rare and with limited significant findings.
In this paper, we propose an artificial neural network (ANN) framework for early prediction of cognitive deficits
in very preterm infants based on functional connectome data from resting state fMRI. Specifically, we conducted
feature selection via stacked sparse autoencoder and outcome prediction via support vector machine (SVM). The
proposed ANN model was unsupervised learned using brain connectome data from 884 subjects in autism brain
imaging data exchange database and SVM was cross-validated on 28 very preterm infants (born at 23–31weeks
of gestation and without brain injury; scanned at term-equivalent postmenstrual age). Using 90 regions of in-
terests, we found that the ANN model applied to functional connectome data from very premature infants can
predict cognitive outcome at 2 years of corrected age with an accuracy of 70.6% and area under receiver op-
erating characteristic curve of 0.76. We also noted that several frontal lobe and somatosensory regions, sig-
nificantly contributed to prediction of cognitive deficits 2 years later. Our work can be considered as a proof of
concept for utilizing ANN models on functional connectome data to capture the individual variability inherent in
the developing brains of preterm infants. The full potential of ANN will be realized and more robust conclusions
drawn when applied to much larger neuroimaging datasets, as we plan to do.

1. Introduction

The high risk of neurodevelopmental impairments is a major con-
cern for parents and clinicians caring for premature babies, especially
for those born very preterm (Jarjour, 2015). Up to 40% of very preterm
infants (i.e. ≤32weeks gestational age) in the United States are diag-
nosed with cognitive deficits at 2 years of age (Hamilton et al., 2016).
Unfortunately, cognitive impairments cannot be accurately diagnosed
until 3 to 5 years of age (Hack et al., 2005; Ment et al., 2003; Spencer-
Smith et al., 2015). While recent studies demonstrate the importance of
genetic factors in premature birth (Zhang et al., 2017) and outcome,
there remains a gap in our knowledge about early identification of in-
fants at high-risk for cognitive deficits. This gap limits our ability to
target early interventions (Nordhov et al., 2010; Spittle et al., 2012) to

the highest risk infants during periods of optimal neuroplasticity in the
first 3 years after birth to enhance their ability to reach their full in-
tellectual potential.

The human brain is a highly interactive and organized system that
exhibits functional units. Each brain unit is connected to multiple other
units. Resting-state functional connectivity MRI (fcMRI) has made
possible quantitative mapping of the connections within and between
these units. The architecture conveys intrinsic information about the
connectivity of the brain, referred to as the brain connectome (Glasser
et al., 2016; Sporns, 2013), which has opened a window for observing
the human mind (Sporns, 2013; Sporns et al., 2005). Mathematically, a
connectome is a graph, representing the brain connectivity (described
as a set of edges) between pairs of brain regions of interest (ROI) (de-
scribed as a set of nodes). The connectome can also be encoded as an
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adjacency matrix, in which each entry represents the brain connectivity
between each pair of ROIs.

Research supports the notion that cognitive deficits may result from
a perturbation of neural connection and communication (Fei et al.,
2014). The brain connectome also shows a high degree of individual or
inter-subject variability (Finn et al., 2015). Investigation of the brain
connectome will improve our understanding of how individual brain
organizational changes influence cognitive function, resulting in an
improved individual risk stratification. Brain connectome studies in
adults and older children have shown that abnormal network properties
may be useful as discriminative features for early diagnosis in a variety
of neurological conditions. Many of these studies have exploited ma-
chine learning models using brain connectome data for such early
prediction (Arbabshirani et al., 2013; Barkhof et al., 2014; Fei et al.,
2014; Finn et al., 2015; Jie et al., 2014a; Jie et al., 2014b; Khazaee
et al., 2015; Khazaee et al., 2016; Prasad et al., 2015; Sacchet et al.,
2015; Vanderweyen et al., 2015; Wee et al., 2012; Wee et al., 2016;
Zhan et al., 2015; Zhu et al., 2014). The progress has now begun to be
extended to neonatal population (Kawahara et al., 2017; Smyser et al.,
2016; Ziv et al., 2013).

Brain connectome data are inherently complicated and have high
dimensionality, which makes it very challenge to effectively extract
intrinsic information embedded in the data. The most popular method
is through principal component analysis (PCA), however, it is a linear
method. The complexed patterns embedded in the brain connectome
data may not be explained linearly. In addition, it is unclear how many
components are needed to reconstruct the data to a reasonable ap-
proximation, as many of the components are trivial. On the other hand,
significant progress has been made on learning high-level representa-
tion of the raw data using artificial neural network (ANN) model
(Hinton and Salakhutdinov, 2006).

In this paper, we propose a Stacked Sparse Autoencoder (SSAE)
based ANN framework for early prediction of cognitive deficits in very
preterm infants based on functional connectome data. Specifically, we
build an unsupervised SSAE model using functional connectome data
from 884 subjects in autism brain imaging data exchange database
(ABIDE) to discover low-dimensional latent representations/features
from the original high-dimensional data. 28 very preterm infants are
used to cross-validate a support vector machine (SVM) classifier to
predict cognitive deficit. We hypothesize that our proposed ANN fra-
mework analyzing functional brain connectome data at birth can ac-
curately predict cognitive deficits at 2 years corrected age at an in-
dividual level in very preterm infants.

2. Methods

2.1. Overview

The proposed ANN framework for early prediction of cognitive
deficits consists of three components: 1) construct whole brain func-
tional connectome; 2) implement SSAE to take functional connectome
as input and extract its high-level connectome features (these features
capture the embedded salient information that is useful for differ-
entiating a single subject); and 3) implement SVM (Arbabshirani et al.,
2017; Chang and Lin, 2001; Levman and Takahashi, 2015) classifier to
conduct 2-class classification (i.e. high risk of cognitive deficits vs. low
risk) using extracted functional brain connectome features. This re-
search design is summarized in Fig. 1.

2.2. Subjects and cognitive assessments

The Nationwide Children's Hospital Institutional Review Board ap-
proved this study and written parental informed consent was obtained
for every subject. The data for this study is from a cohort of 28 very
preterm infants, ≤32 weeks gestational age, cared for in the neonatal
intensive care unit at Nationwide Children's Hospital. Infants with

known structural congenital central nervous system anomalies, con-
genital chromosomal anomalies, or congenital cyanotic cardiac defects
were excluded. In addition, parents were not approached for consent if
their infant remained on persistently high mechanical ventilator sup-
port (e.g., peak inspiratory pressure > 30 and/or fraction of inspired
oxygen>50%) within the first 28 days after birth. All 28 infants now
reached 2 years corrected age and completed their standardized Bayley
Scales of Infant and Toddler Development III test. The Bayley-III nor-
mative cognitive scores are on a scale of 50 to 150, with a mean of 100
and standard deviation (SD) of 15. We grouped our cohort using a cut-
off of 85 into those at high vs. low risk for cognitive deficits (i.e. two
classes). A child with a cognitive score of< 85 is considered to have
moderate to severe deficit and is comparable to a child with a mental
developmental index< 70 on the Bayley-II (Johnson et al., 2014). The
demographic information for these infants are provided in Table 1. We
conducted two-sided t-tests (assuming unequal variance) and found that
between the high and low risk groups, there were no significant dif-
ferences in birth weight (p=0.08), gestational age at birth (p=0.28)
and postmenstrual age at scan (p=0.34). There was significance dif-
ference of cognitive scores (P < 0.0001) between two groups.

2.3. MRI acquisition

Infants were scanned on a 3T GE HDx scanner equipped with an
eight-channel infant head coil (Lammers Medical Technology,
Germany). Functional images were collected using a single-shot echo
planar image sequence sensitized to T2* weighted blood oxygenation
level dependent (BOLD) signal changes. Acquisition parameters are:
repetition time TR=3000ms, echo time TE=35ms, flip angle
FA=90°, resolution 2.8×2.8×3.0mm3. A total of 100 frames were
collected in 5.2min. This acquisition time was chosen because it was
more clinically feasible without compromising data quality (Van Dijk
et al., 2010). Anatomical scans were conducted with a Proton Density/
T2-weighted sequence (TR/TE1/TE2=11,000/14/185ms, FA=90°,
resolution 0.35× 0.35× 2mm3). All subjects were scanned during
natural sleep without the use of any sedation after being fed and
swaddled. A 3T MRI-compatible transport incubator (Nomag 3.0IC,
Lammers Medical Technology, Germany) was used for the inpatient
scans. MRI noise was minimized using Insta-Puffy Silicone Earplugs
(E.A.R. Inc., Boulder, CO) and Natus Mini Muffs (Natus Medical Inc.,
San Carlos, CA).

2.4. Whole-brain functional connectome construction

A four-dimensional fcMRI dataset requires extensive preprocessing
before resting-state network analyses can be conducted (Glasser et al.,
2013; Smith et al., 2013). We developed a neonatal-optimized pipeline,
(He and Parikh, 2015) that can be briefly summarized as follows: 1)
Reorientation – acquired scans are aligned with anterior commissure
(AC) - posterior commissure (PC) line into a standard image plane; 2)
Skull stripping – remove non-brain parts of the image; 3) Realignment –
align each time point's frame to the mean frame, reducing the effects of
subject head motion during the acquisition; 4) Normalization – align
fcMRI frames to the same subject's high-resolution structural image
using rigid body registration and also align this structural image to a
neonatal template (Shi et al., 2011) using affine transformation. This
allows both fcMRI and structural images to be in the same “standard
space” reference coordinate system; 5) Spatial smoothing – apply iso-
tropic Gaussian filter with 6mm kernel to improve signal-to-noise ratio
and ameliorate the effects of functional misalignments across subjects;
6) Band-pass filtering (0.008 < f < 0.09 Hz) – remove the lowest and
highest temporal drifts in the data; 7) Motion artifact reduction – de-
tects corrupted time points using motion scrubbing (Power et al., 2012)
and regresses this confounding factor out of the data (Behzadi et al.,
2007). The above preprocessing methods are achieved using FMRIB
Software Library (FSL, Oxford University, UK), Statistical Parametric
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