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A B S T R A C T

Objective: To diagnose and lateralise temporal lobe epilepsy (TLE) by building a classification system that uses
directed functional connectivity patterns estimated during EEG periods without visible pathological activity.
Methods: Resting-state high-density EEG recording data from 20 left TLE patients, 20 right TLE patients and 35
healthy controls was used. Epochs without interictal spikes were selected. The cortical source activity was ob-
tained for 82 regions of interest and whole-brain directed functional connectivity was estimated in the theta,
alpha and beta frequency bands. These connectivity values were then used to build a classification system based
on two two-class Random Forests classifiers: TLE vs healthy controls and left vs right TLE. Feature selection and
classifier training were done in a leave-one-out procedure to compute the mean classification accuracy.
Results: The diagnosis and lateralization classifiers achieved a high accuracy (90.7% and 90.0% respectively),
sensitivity (95.0% and 90.0% respectively) and specificity (85.7% and 90.0% respectively). The most important
features for diagnosis were the outflows from left and right medial temporal lobe, and for lateralization the right
anterior cingulate cortex. The interaction between features was important to achieve correct classification.
Significance: This is the first study to automatically diagnose and lateralise TLE based on EEG. The high accuracy
achieved demonstrates the potential of directed functional connectivity estimated from EEG periods without
visible pathological activity for helping in the diagnosis and lateralization of TLE.

1. Introduction

Mesial temporal lobe epilepsy (TLE) is the most common type of
pharmaco-resistant epilepsy in adults. In order to estimate the locali-
sation of the epileptogenic zone, Electroencephalography (EEG) is re-
corded to identify pathological activity such as seizures or Interictal
Epileptiform Discharges (IEDs). However, in some patients, these are
infrequent or completely absent in the EEG recording.

Epilepsy is increasingly recognized as a network disease (Laufs,
2012) and measures of functional relationships between activities of
different brain regions could help better understand epileptic networks.
Directed functional connectivity estimates the directionality of the

functional connections between different brain regions. Several studies
have shown that directed functional connectivity measures based on
intracranial EEG can help to identify the irritative zone and the seizure
onset zone (van Mierlo et al., 2013; Wilke et al., 2009; van Mierlo et al.,
2014). Furthermore, directed functional connectivity applied to brain
sources estimated from high-density scalp EEG revealed interictal net-
work patterns concordant with cognitive deficits in TLE (Coito et al.,
2015) and significant connectivity differences in TLE compared to
healthy controls in the absence of interictal spikes (Coito et al., 2016).

Machine learning algorithms have been used for automatic detec-
tion and localization of the epileptogenic zone in TLE using a multitude
of imaging modalities (Focke et al., 2012; Kamiya et al., 2016; Cantor-

http://dx.doi.org/10.1016/j.nicl.2017.09.021
Received 25 April 2017; Received in revised form 15 July 2017; Accepted 26 September 2017

⁎ Corresponding author at: Ghent University, Department of Electronics and Information Systems, Technologiepark 15, 9052 Gent, Belgium.

1 These authors contributed equally to the manuscript.
E-mail address: thibault.verhoeven@ugent.be (T. Verhoeven).

NeuroImage: Clinical 17 (2018) 10–15

Available online 28 September 2017
2213-1582/ © 2017 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
http://dx.doi.org/10.1016/j.nicl.2017.09.021
http://dx.doi.org/10.1016/j.nicl.2017.09.021
mailto:thibault.verhoeven@ugent.be
http://dx.doi.org/10.1016/j.nicl.2017.09.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2017.09.021&domain=pdf


Rivera et al., 2015; Chiang et al., 2015; Yang et al., 2015; Kerr et al.,
2013). However, to the best of our knowledge, no study has attempted
to automatically diagnose and lateralise TLE using scalp EEG.

Here, we used EEG-based directed functional connectivity values to
build a diagnostic and lateralization classification system for TLE in the
absence of visible epileptic activity. Moreover, we compared our results
with previous classification studies using other imaging modalities.

2. Materials and methods

2.1. Subjects

Twenty LTLE patients, 20 RTLE patients and 35 healthy subjects
were included. Patients were retrospectively selected from the high-
density EEG database of the University Hospital of Geneva, University
Hospital of Bern and Paracelsus Medical University in Salzburg ac-
cording to the following inclusion criteria: drug-resistant TLE, uni-
lateral anteromedial localization of the epileptogenic zone confirmed
by good surgical outcome (Engel's class I or II, after at least 12 months
post-operative follow-up), intracranial EEG or concordant presurgical
evaluation methods and the existence of at least a 10–15 min resting-
state eyes-closed high-density EEG recording (96–256 channels). All
patients had interictal activity on long-term EEG concordant with the
diagnosis of unilateral TLE. Most of them had extensive presurgical
evaluation including ictal video-EEG, PET, SPECT and electric source
imaging. The patients' dataset used in this study was the same as re-
ported in our previous work (Coito et al., 2016). The clinical details can
be found in the Supplementary material of the present manuscript.

2.2. Standard protocol approvals, registrations, and patient consents

All patients were evaluated in the epilepsy units of Geneva
University Hospital, Switzerland, Bern University Hospital,
Switzerland, and Paracelsus Medical University in Salzburg, Austria.
The three local ethics committees approved this study. Written in-
formed consent was obtained from all participants in the study.

2.3. EEG, electrical source imaging and directed functional connectivity

Subjects underwent a resting-state eyes-closed recording during
presurgical evaluation. The sampling frequency of the recorded EEG
ranged between 250 and 1000 Hz. All signals were filtered offline be-
tween 1 and 100 Hz and then downsampled to 250 Hz. Sixty epochs of
1 s, free of artefacts and IEDs, during wakefulness were selected per
subject. The activity of brain sources during the selected EEG epochs
was obtained using Electrical Source Imaging (ESI): an individual head
model and a linear distributed inverse solution with biophysical con-
straints were used (Grave de Peralta Menendez et al., 2004). The grey
matter was parcelled in 82 Regions Of Interest (ROI) and the solution
point closest to the centroid of each ROI was considered as re-
presentative of the source activity in this ROI. This procedure resulted
in 82 time-series representing the activity of each individual ROI during
the 60 selected epochs.

For each subject and epoch, directed functional connectivity be-
tween the 82 source ROIs was estimated using the weighted Partial
Directed Coherence (wPDC) (Baccala & Sameshima, 2001; Astolfi et al.,
2006; Plomp et al., 2014), and the mean wPDC across epochs was
taken.

For each subject, we obtained a 3D connectivity matrix (82 re-
gions × 82 regions × frequency), which represented the outflow from
one region to another for each frequency. For further analysis, we re-
duced the connectivity matrix to 3 frequency bands: theta (4–8 Hz),
alpha (8–12 Hz) and beta (12–30 Hz), by calculating the mean con-
nectivity value in each band.

The detailed procedures for EEG recording, electrical source ima-
ging and directed functional connectivity have been described in (Coito

et al., 2016) and are also included in the Supplementary material of this
manuscript.

2.4. Classification

2.4.1. Feature selection
The calculation of the connectivity between every pair of regions in

the three frequency bands resulted in 20.172 features for each in-
dividual. An optimal subset of these features was selected to avoid
creating false decision rules when training the classifier on the example
data. As an example, consider the case where a certain connection is
slightly stronger for RTLE compared to LTLE patients in the majority of
our patients, but not for the whole population of TLE patients. A clas-
sifier taking this contingency as a general rule for lateralization can
perform poorly on new subjects. This issue of overfitting to example
data becomes more likely with decreasing number of subjects and in-
creasing number of feature values per subject (Mwangi et al., 2014;
Guyon & Elisseeff, 2003). To avoid overfitting, we allowed a maximum
of one feature per ten subjects, resulting in a maximum of 7 features for
diagnosis and 4 features for lateralization.

First, the 82 regions were reduced to a set of 14 regions that showed
differences between groups in our previous study (Coito et al., 2016)
and are known to be involved in TLE: left and right Hippocampus
(Hipp), Amygdala (Amyg), Parahippocampus (PHipp), Anterior Cin-
gulate Cortex (ACC), Posterior Cingulate Cortex (PCC), Olfactory cortex
(Olf) and Medial Temporal Pole (TPMid). This left us with 588 features
that were used to build the first RF classifier. The importance of each
feature f in this classifier was calculated as the decrease in classification
performance when the values of f are randomly permuted. As random
permutation breaks the link between the feature f and the class labels,
this permutation importance reflects how much classification power is
lost when this feature is taken out of the design of the system. Following
the feature selection method by Genuer et al. (2010), features with a
non-significant importance were considered irrelevant and thus re-
moved from the set.

Further reduction was obtained by removing redundant informa-
tion. For that purpose Genuer et al. (2010) selects the minimal subset of
features that contains the maximum amount of discriminant informa-
tion. The method considers the interaction between features during this
selection, which is important as the relevance of an outflow may de-
pend on which other outflows were considered as features. For inter-
pretation of the feature selection result, we calculated the actual in-
teraction effect of a feature f1 on another feature f2 as the change in
permutation importance of f2 when f1 is removed from the design
(again by permuting its values). A negative interaction (a decrease in
importance) indicates that the discriminative information in f2 is only
relevant when f1 is included in the design. Higher order interactions
(e.g. between three features) can also have an impact. However, with
increasing order, more data is required to obtain a reasonably accurate
measure of interaction. The first order interaction is given here to il-
lustrate the impact of feature interaction in general.

2.4.2. Random Forests
Random Forest (RF) (Breiman, 2001) is a machine learning tech-

nique in which an ensemble of elementary classifiers is trained and its
outputs aggregated to classify a new input sample. In RF, the ensemble
is composed of many classification and regression trees (Loh, 2011),
each trained on a different bootstrap subset of the available samples.
When a new input is to be classified, each tree in the ensemble makes
the classification and the sample is assigned to the class that was chosen
by the majority of the trees.

The scikit-learn library (http://scikit-learn.org/stable/) was used to
implement a Balanced RF classifier. This classifier differs from standard
RF in the way that subsets containing an equal number of subjects from
both classes are used to train the decision trees. Every forest contained
1000 trees. The size of the random set of features from which splits
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