

Review

Production of Active Compounds in Medicinal Plants: From Plant Tissue Culture to Biosynthesis

Juan Wang¹, Jian-li Li², Jing Li¹, Jin-xin Li¹, Shu-jie Liu², Lu-qi Huang³, Wen-yuan Gao^{1*}

- 1. Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- 2. Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industry Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- 3. State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

ARTICLE INFO	ABSTRACT
Article history	Over past decades plant tissue culture has emerged as an alternative of whole plant
Received: November 30, 2016	cultivation in the production of valuable secondary metabolites. Adventitious roots culture of <i>Panax ginseng</i> and <i>Echinacea purpure</i> has reached the scale of 1–10 kL. Some
Revised: January 23, 2017	molecular biological techniques, such as transgenic technology and genetic stability are
Accepted: February 9, 2017	increasingly used in the studies on plant tissue cultures. The studies on elicitors have
Available online:	deepened into the induction mechanism, including signal molecules, functional genes,
March 13, 2017	and so on. More and more biological elicitors, such as <i>A. niger</i> and yeast are used to increase the active compounds in plant tissue cultures. We also discussed the
	application of synthetic biology in the studies on biosynthesis of artemisinin, paclitaxel,
DOI:	and tanshinon. The studies on active ingredients biosynthesis of medicinal plants
10.1016/S1674-6384(17)60085-6	provide unprecedented possibilities to achieve mass production of active ingredients.
	Plant tissue cultures can not only produce active ingredients but also as experimental materials for biosynthesis. In order to improve the contents of active compounds in
	medicinal plants, following aspects could be carried out gene interference or gene
	silencing, gene overexpression, combination with chemical synthesis, application of
	elicitors, and site-directed mutagenesis of the key enzymes.
	Key words
	biosynthesis; functional gene; medicinal plant tissue culture; secondary metabolites

© 2017 published by TIPR Press. All rights reserved.

1. Introduction

In recent decades, plant cell, tissue, and organ cultures have emerged as an alternative over whole plant cultivation

for the production of secondary metabolites which are used as pharmaceuticals, flavours, fragrances, colouring agents, food additives, and agrochemicals (Paek et al, 2014). Plant tissue cultures can not only produce active ingredients but also as

^{*} **Corresponding author: Gao WY** E-mail: biochemgao@163.com Fund: Major Increase and Decrease of the Central Level (2060302)

experimental materials for studies on synthetic biology. More recently, active ingredients biosynthesis of medicinal plants are being achieved through genetic and metabolic engineering approaches. Table 1 lists the production of active compounds through plant tissue culture or synthetic biology method. In this review, we summarized production of active compounds in medicinal plants by using plant tissue cultures and synthetic biology. We also discussed the relationship between plant tissue cultures and synthetic biology.

2. Production of active compounds through plant tissue culture

At present, cells, adventitious roots, hairy roots, shoots, and embryos have been successfully cultivated for the large scale production of secondary metabolites. Recent advances in plant cell, tissue, and organ culture research mainly focus on optimization of culture conditions, composition comparison, elicitors, transgenic technology, and genetic stability.

Components	Secondary metabolites	Plants	Sources	References
terpenoids	taxuyunnanine c, taxol	Taxus chinensis (Pilger) Rehd.	cell, biosynthesis	Gao et al, 2010; Zhou et al, 2015;
				Zhang et al, 2010
	saponin	Panax quinquefolius L.;	cell, hairy root,	Hao et al, 2010; Zhao et al,
		A. Senticosus;	biosynthsis	2011; Tao et al, 2011;
		P. ginseng; Bupleurum falcatum		Balusamy et al, 2013; Moses et
				al, 2014
	glycyrrhizic acid	Glycyrrhiza uralensis Fisch.	hairy root	Zhang et al, 2011; Yang et al, 2014
	triterpenoid	Codonopsis lanceolatae (Sieb. et	hairy root	Kim et al, 2011
		Zucc.) Trauv.		
	valerenic acid	Valeriana officinalis Linn.	hairy root	Torkamani et al, 2014
	saikosaponin	Bupleurum chinense DC.	adventitious root	Sun et al, 2013
	triptolide	Tripterygii wilfordii Hook.F.	adventitious root	Zhu et al, 2014a
	tanshinones	Salvia miltiorrhiza Bunge	cell, hairy root,	Zhao et al, 2010; Guo et al,
		(Lamiaceae)	biosynthesis	2013
	artemisinin	Artemisia annua Linn	biosynthesis	Paddon et al, 2013
flavonoids	favonoids	Ginkgo biloba Linn; Saussurea	cell; hairy root	Hao et al, 2010; Hu, Han, and
		involucrate Kar. et Kir. ex Maxim.		Zhou, 2011. Zhang et al, 2013;
				Qiao et al, 2011
	licochalcone a, total flavonoid	G. uralensis	hairy root	Zhang et al, 2011
alkaloids	alkaloid	Fritillaria cirrhosa D. Don.	cell	Wang et al, 2011
	total alkaloid, catharanthine,	Catharanthus roseus (L.) G. Don	cell, biosynthesis	Shukla et al, 2010; Moerkercke
	vindoline			et al, 2015
	campothecin	Campototheca acuminate Decaisne	cell	Qi et al, 2010a; 2010b
	atractylodin	Atractylodes lancea (Thunb.) DC.	cell	Zhao et al, 2010
	ephedrine	Ephedrae sinica Staph	cell	Gandi et al, 2012
	tropane alkaloids	Anisodus acutangulus C. Y.	hairy root	Cao et al, 2014
	scopolamine, hyoscyamine	Datura stramonium Linn	hairy root	Sun et al, 2013
	vincamine	C. roseus	hairy root	Verma et al, 2014
	wilforine	T. wilfordii	adventitious root	Zhu, et al, 2014
	tricyclic aromatic quinines	Aloe vera (Linn.) N.L.	adventitious root	Lee et al, 2013
penylpropanoids	coumarins	Angelica archangelica L.	cell	Tomas et al, 2012
phenolic acids	phenolic acids, chlorogenic acid	Eryngium planum L.	cell	Kikowska et al, 2012
	rosmarinic acid	S. miltorrhiza	hairy root	Sheng and Chen, 2013;
	caffeic acid	E. purpure	adventitious root	Cui, 2013
quinones	acetylshikonin	Arnebia euchroma (Royle) Johnst;	cell, hairy root	Baranek et al, 2012; Li et al,
		Radix Arnebiae Seu. Lithospermi		2010; He et al, 2010
	anthroquinones	Morinda officinalis How.	hairy root	Zheng et al, 2014
	aloe emodin	<i>A. vera</i> Burman var. <i>chinensis</i> (Haw) Berg	adventitious root	Lee et al, 2013
	chrysophanol	A. vera B. chinensis	adventitious root	Lee et al, 2013
steroids	phytoecdysteroids	Achyranthes bidentata Blume	cell	Wang et al, 2013
	guggulsterone	Commiphora wightii (Arn.) Bhand.	cell	Suthar and Ramawat, 2010

Table 1 Production of secondary metabolites in medicinal plants through bioengineering

Download English Version:

https://daneshyari.com/en/article/8692350

Download Persian Version:

https://daneshyari.com/article/8692350

Daneshyari.com