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We investigate sample size calculation for before–after experiments where the outcome of interest is binary and
the enrolled subjects contribute a mixed type of data: some subjects contribute complete pairs of before- and
after-intervention outcomes, while some subjects contribute incomplete data (before-intervention only or
after-intervention only). We use the GEE approach to derive a closed-form sample size formula by treating the
incomplete observations as missing data in a generalized linear model. The impacts of various designing factors
are appropriately accounted for in the sample size formula, including intervention effect, baseline response rate,
within-subject correlation, and distribution of missing values in the before- and after-intervention periods. We
illustrate sample size estimation using a real application example.We conduct simulation studies to demonstrate
that the proposed sample size maintains the nominal power and type I error under a wide spectrum of trial
configurations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This study is motivated by a before-and-after experiment to assess
how an evidence-based colorectal cancer (CRC) prevention outreach
program improves the screening rate in a socially and economically
disadvantaged community. The general idea of the experiment goes as
follows: in the targeted community, a baseline survey is performed on
a random sample of screen-eligible adults at a local safety-net health
system. A patient is asked whether he/she is willing to participate and
complete a colorectal screening procedure. Then a one-year awareness
campaign is conducted on colorectal cancer screening through the use
of client reminders (such as letters alerting patients for need of screen-
ing), small media (such as letters discussing importance of screening),
and reducing structural barriers to screening (such asmaking screening
more convenient). After the campaign, the random survey will be
repeated on the same population to evaluate the effect of the awareness
campaign. The outcome of primary interest is binary, with 0 for no and 1
for yes.

The complication in this experiment is that, due to the limited size of
the local safety-net health system, there is a significant overlapping be-
tween the subjects surveyed before and after intervention. For example,
suppose thatwe randomly sample 1000 subjects at each timepoint, 600
of them will appear twice in the survey. As a result, a total of n= 1400
unique subjects will be involved in this study, among whom, we have
paired observations from n1 = 600 subjects, pre-intervention

observations only from n2=400 subjects, and post-intervention
observation only from n3 = 400 subjects. This study does not follow
the typical before-and-after experimental design where each subject
contributes a pair of observations, one before the intervention and one
after the intervention. The reason is that, compared with performing
two straightforward random samplings, tracking down every subject
to obtain observations both at baseline and after intervention requires
a significant extra amount of funding and manpower, which might
become prohibitively expensive for a large-scale population study.
Furthermore, in a socially and economically disadvantaged community,
there is a great presence of homelessness and unstable housing. Even
if we design the study to obtain paired outcomes from each subject,
there would always be a significant amount of missing values in the
collected data set. Thus, it is meaningful to develop a sample size
approach for studies that involves amixture type of data: some subjects
contributing before-intervention measurements only, some after-
intervention only, and some pairs of before- and after-intervention
measurements.

There has been relatively limited development in the statistical
inference based on paired binary outcomes with incomplete data.
Ekbohm [5], Choi and Stablein [1], and Thomson [22] proposed
estimators for the proportional difference based on the large sample
theory. Shih [18] investigated maximum likelihood estimation and
likelihood ratio test for this type of data. Tang and Tang [21], and Tang
et al. [20] proposed nonparametric exact testing and estimating
approaches. In this paper we present a sample size calculation method
for experiments with paired binary outcomes, which appropriately
accounts for the impact of missing values in the before- or after-
intervention measurement.
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Traditionally researchers have tried to accommodatemissing values
through a crude adjustment. It starts by calculating the sample size as-
suming nomissing data, denoted by n0.When every subject contributes
a complete pair of outcomes, theMcNemar's test is themost popular ap-
proach to detect the before–after difference [2], and sample size calcula-
tion for the McNemar's test is well established in statistical literature
[12,19,3,8,6]. Once n0 is obtained, the final sample size is calculated by
n0/w, where w is the proportion of subjects who are expected to con-
tribute complete data among all enrolled subjects.

We propose to adjust for missing data through a generalized esti-
mating equation (GEE) approach [9]. GEE has long been recognized as
a robust method to model correlated data and accommodate missing
values in studies involving longitudinal and clustered observations
[23,13]. Sample size calculation based on theGEE approach has been ex-
plored by many researchers. For example, Liu and Liang [10] developed
a sample size formula based on a generalized score test. Rochon [16]
proposed a sample size formula using a non-central version of the
Wald χ2 test statistics. Jung and Ahn [7] investigated sample size calcu-
lation to compare rates of change between two treatment groups. Zhang
and Ahn [24] developed a sample size formula for the test of time-
averaged difference accounting for missing values. In this study we
present a closed-form sample size formula for before–after studies
with partially overlapping cohorts. When there is no missing data, the
proposed sample size is very close to that calculated based on the
McNemar's test. When there is missing data, however, because the pro-
posed sample size appropriately accounts for partial information from
incomplete pairs, it can lead to a substantial saving compared with the
crude adjustment approach. The sample size formula explicitly shows
the factors that affect the impact of missing values.

The rest of the paper is organized as follows. In Section 2 we derive
the sample size formula based on the GEE approach. Simulation studies
were presented in Section 3. We demonstrate the proposed method
using a real application example in Section 4. Finally, we discuss limita-
tions and potential extensions in Section 5.

2. A GEE sample size approach

We first present the derivation under no missing data. Let yit be the
binary outcome (0 for no and 1 for yes) from subject i(i = 1,…, n) at
time t. We use t = 0 and 1 to denote the before- and after-
intervention periods, respectively. We model yit by a logistic regression
model:

log
pit

1−pit

� �
¼ β1 þ β2t ¼ X0

itβ ð1Þ

where pit= P(yit=1),β1 ¼ logð pi0
1−pi0

Þmodels the log-transformed base-

line odds and β2 ¼ logð pi1
1−pi1

Þ− logð pi0
1−pi0

Þ is the log-transformed odds

ratio between the after- and before-intervention responses. Thus the in-
tervention effect is represented by β2, and we are interested in testing
the null hypothesis H0: β2 = 0 versus Ha: β2 ≠ 0. We present the
model in a matrix form, with Xit = (1, t)′ being the vector of covariates
at time t and β = (β1, β2)′ being the vector of regression parameters.
We further define ρ=Corr(yi0, yi1) to be thewithin-subject correlation

coefficient.We assume the responses to be independent across different
subjects, Corr(yit,yi′t′)=0 for i ≠ i′. Thus the statistical properties of
paired outcomes (yi0, yi1) are fully described by (β1, β2, ρ).

First we estimate the intervention effect through the GEE approach.
Under an independentworking correlation structure, the GEE estimatorβ̂ ¼ ðβ̂1; β̂2Þ0 is obtained by solving

Sn βð Þ ¼
Xn
i¼1

X1
t¼0

yit−pit βð Þ½ �Xit ¼ 0:

Here pit(β) = exp(Xit′β)/[1+ exp(Xit′β)] is implied by Eq. (1).
The Newton–Raphson algorithmcan be employed to obtain a numerical
solution. At the (m+1)th iteration,

β̂ mþ1ð Þ ¼ β̂ mð Þ þ A−1
n β̂ mð Þ� �

Sn β̂ mð Þ� �
;

where An(β) = −∂Sn(β)/∂β. Liang and Zeger [9] showed thatffiffiffi
n

p ðβ̂−βÞ is approximately normal with mean zero and the variance

is consistently estimated by Σn ¼ nA−1
n ðβ̂ÞVnðβ̂ÞA−1

n ðβ̂Þ, where

Vn β̂
� �

¼
Xn
i¼1

X1
t¼0

ϵ̂itXit

 ! X1
t¼0

ϵ̂itXit

 !0" #

with ϵ̂it ¼ yit−pitðβ̂Þ . Letting σ̂2
2 be the (2,2)th element of Σn, we

reject H0: β2=0 if j ffiffiffinp
β̂2=σ̂2jNz1−α=2. Here α is the significance level

and z1−α/2 is the 100(1−α/2)th percentile of the standard normal
distribution.

Let σ2
2 be the true variance of the GEE estimator β̂2 under true pa-

rameters (β1,β2,ρ). If the alternative hypothesis is true, β2≠0, in order
to achieve a testing power of 1−γwith a type I error of α, the required
sample size is solved from equation Pðj ffiffiffinp

β2=σ2jNz1−α=2jHaÞ ¼ 1−γ.
The solution is

n ¼ σ2
2 z1−α=2 þ z1−γ
� �2

β2
2

: ð2Þ

In the following theorem we present a closed-form expression for
σ2

2, which leads to a closed-form GEE sample size formula under no
missing data.

Theorem1. Let pt=pit(β), t=0,1, be the true response rates shared by
all subjects. We define τt2=pt(1−pt). As n→∞, σ2

2 has a closed-form

σ2
2 ¼ τ20 þ τ21−2ρτ0τ1

τ20τ
2
1

: ð3Þ

Proof. See Appendix A. □

2.1. A sample size to accommodate missing data

To accommodate the scenarios that a portion of subjects are likely to
miss the before- or after-intervention assessment, we introduce δit=0/
1 to indicate that the outcome of the ith subject at time t (t=0,1) is
missing/observed. The probability that a subject completes the outcome
at time t is denoted by qt=E(δit). We impose the constraints that
P(δi0=δi1=0)=0, i.e., each subject contributes at least one of the
before- or after-intervention outcomes. Under this constraint, it can be
shown that the proportion of subjects with complete pairs of outcomes
is P(δi0=δi1=1)=q0+q1−1. Thus we impose the second constraint,
q0+q1N1. We demonstrate that, in the presence of incomplete pairs,
the GEE estimator of β2 still has a closed-form expression for variance.

Table 1
Probabilities of pre- and post-intervention outcomes.

Post-intervention

Pre-intervention No Yes

No h00 h01 1−p0
Yes h10 h11 p0

1−p1 p1
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