Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers

Darla R. Shores, MD, PhD¹, and Allen D. Everett, MD²

iomarkers are incorporated ubiquitously into clinical practice as surrogate endpoints of physiologic and pathologic processes that cannot be measured directly. For example, a lipid panel is used to evaluate cardiovascular disease but does not measure vascular heath directly. Biomarkers monitor health, detect exposures, diagnose disease, predict disease severity and outcome, and monitor treatment effects. The potential utility of biomarkers in pediatrics is high. Children are not only at risk of developing unique illnesses, but prevalent chronic diseases previously thought of as "adult" illness, including obesity, cardiovascular disease, and type 2 diabetes, have their origins in childhood.^{1,2} In an era in which precision, or personalized, medicine is becoming a priority, testing that leads to early intervention and curbs the severity of disease may have an immense impact on population health and the use of healthcare resources. Table 1 highlights examples of commonly used and recent biomarkers in pediatrics. Despite this potential, biomarker discovery in pediatrics has been limited. In 2010, the barriers to pediatric biomarker discovery were reviewed.²¹ In this updated review, we will discuss the progress, as well as remaining challenges specific to pediatrics, and potential strategies for moving forward.

Definition

Biomarkers are defined by the Institute of Medicine as tests "that are objectively measured and evaluated as indicators of normal biologic processes, pathologic processes, or pharmacologic responses to therapeutic intervention."²² Therefore, biomarkers may include biofluids (urine, blood, saliva, stool, cerebrospinal fluid), other tissue (including hair or nails), radiographic, genetic, or any other physiologic testing. The arena of biomarker discovery is moving toward proteins and other small molecule targets, as they provide sensitivity and specificity of current and emerging health status that genetic approaches cannot match.

Desirable Characteristics of Biomarkers

Several desirable characteristics have been defined for biomarkers.²³ New biomarkers need to be highly correlated with the current gold standard and should offer an improvement over what already is available. The sample must be both easy to obtain (referring to specimen collection) and easy to process

CALIPER Canadian Laboratory Initiative on Pediatric Reference Intervals NIH National Institutes of Health and analyze in the laboratory. Both aspects are necessary for serial measurements to follow trends. Ideally, tests also should have high specificity and sensitivity and be inexpensive to perform.

New methods of noninvasive surrogate testing as an alternate to blood especially are important in pediatrics. Painful procedures are anxiety-producing for both patients and parents and often require sedation of the patient. Even imaging such as magnetic resonance imaging requires sedation in young children. Sedation adds cost and risk, making testing more difficult for patients and next-to-impossible to perform on healthy control subjects. Although invasive procedures may still be needed for confirmatory testing in some individuals, reliable noninvasive biomarkers from saliva, urine, stool, or hair may help avoid unnecessary procedures in many others.

Interest in Pediatric Biomarkers

Systematic literature searches were performed within the PubMed database to capture published pediatric clinical studies on biomarkers that use biospecimens and biobanks. The specimen categories were cerebrospinal, urine, blood, serum, plasma, saliva, stool, hair, and general/miscellaneous, and the search strategies included Medical Subject Headings vocabulary terms. The search query for biomarkers was combined with queries for all specified body fluids and for clinical studies. Searches were limited to the pediatric population and publication years 2012-2016. The biomarker queries were limited by language; biobank queries were not limited by language or publication status. Detailed search strategies and the complete list of references are provided in the **Appendix** (available at www.jpeds.com).

The search identified 1126 publications. Although many diseases have overlapping biological system involvement, the publications were categorized broadly (**Table 2**), with infection/sepsis, metabolic/nutrition, and kidney/urologic as the 3 most common systems. This is partially driven by the availability of high-quality inflammatory pathway multiplex immunoassays (including products from Meso Scale Discovery,

From the ¹Division of Gastroenterology, Hepatology, and Nutrition; and ²Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD

Supported by National Heart, Lung, and Blood Institute 1R01s HL119664 and HL135114 and the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development R01 HD086058 (to A.E.) and an American Society for Parenteral and Enteral Nutrition Rhoads Research Foundation award (to D.S.). A.E. is a consultant for Immunarray, Inc. The other author declares no conflicts of interest.

^{0022-3476/\$ -} see front matter. © 2017 Elsevier Inc. All rights reserved. https://doi.org10.1016/j.jpeds.2017.08.077

Table 1. Examples of pediatric biomarkers in clinical use Authors Year Test Screening/diagnostic utility Comments					Disenseimen
					Biospecimen
Bortolotti et al ³	2003	anti-LKM	Autoimmune hepatitis, chronic	Positive in type 2 autoimmune hepatitis and	Serum/blood
Roberts ⁴	2011		hepatitis C	in 10% of hepatitis C	0 ///
Dalrymple and Moore ⁵	2015	ANA	Multiple rheumatologic and autoimmune	Low titers in up to 20% healthy children;	Serum/blood
Breda et al ⁶	2010		disorders: systemic lupus erythematosus, rheumatoid arthritis,	Positive in >90% of connective tissue disorders; elevations can occur with drug	
DI EUA EL AI	2010		dermatomyositis, idiopathic	reactions and some viral infections	
			thrombocytopenic purpura,		
			autoimmune hepatitis, and thyroiditis		
Nir et al ⁷	2009	BNP	Heart disease and failure	Normally elevated in the first few days of life	Serum/blood
	2000			then decrease; levels correlate with	ooranii biooa
				pulmonary-to-systemic flow and vascular	
				resistance ratios, mean pulmonary artery	
				pressure, obstructive lesions, and	
				allograft disease after transplant	
Henderson et al ⁸	2014	Calprotectin	Intestinal inflammation	Used for screening and treatment response	Stool
Zoppelli et al ⁹	2012			in inflammatory bowel disease; also may	
				be elevated with intestinal infection,	
				cystic fibrosis, and juvenile polyps.	
				Normal values are highly variable in infants born premature	
Jones and	2013	C-peptide	Diabetes mellitus	Approximates endogenous insulin	Serum/blood
Hattersley ¹⁰	2013	C-hehrine	Diabetes menitus	production, helps differentiate type	Serum/bioou
Breda et al ⁶	2010	CRP	Acute and chronic inflammation from	Highly sensitive, but not specific, increases	Serum/blood
	2010	0.11	severe bacterial infection, tissue	more quickly compared with ESR	oorani, brood
			injury, autoimmune disease		
Elsayed and Reilly ¹¹	2010	СК	Muscle injury	Elevated in rhabdomyolysis, myopathies,	Serum/blood
Gatheridge et al ¹²	2016			and myositis	
Breda et al ⁶	2010	Ferritin	Iron deficiency anemia (low)	May be elevated as an acute-phase reactant	Serum/blood
Malope et al ¹³	2011		Hemophagocytic lymphohistiocytosis	in sepsis and shock	
			(high)		
Tang et al ¹⁴	2016	FENO	Asthma	Marker of eosinophilic inflammation used	Breath test
Petsky et al ¹⁵ Lehrnbecher et al ¹⁶	2016 2016	Galactomannan	Aspergillus infection	for diagnosis and treatment response Less sensitive for other fungal infections	Serum/blood
Lenimbecher et al	2010	Galacionianian	(immunocompromised patients)	Less sensitive for other fungar intections	Seruminiouu
Copeland et al ¹⁷	2013	Hemoglobin A1C	Diabetes mellitus	Used for diagnosis and to guide dosing	Serum/blood
oopolalia ot al	2010	noniogiosiniinio		of insulin	ooranii biooa
Fine-Goulden and	2014	Lactate	lschemia, sepsis, lactic acidosis/	Elevation may predict mortality in acutely	Serum/blood
Durward ¹⁸			metabolic crisis	ill or trauma patients	
Breda et al ⁶	2010	Procalcitonin	Sepsis/severe bacterial infection, shock	More specific to bacterial sepsis than CRP	Serum/blood
Lautz et al19	2016			in children	
Breda et al ⁶	2010	ESR	Acute and chronic inflammation from	Acute-phase reactant with high sensitivity	Serum/blood
			autoimmune disease or infection	but low specificity for any one disease,	
				increases more slowly compared	
Kolly at al ²⁰	2015	TTC	Colina diagona	with CRP	Corum/blood
Kelly et al ²⁰	2015	TTG	Celiac disease	Highly sensitive and specific; used for screening and treatment response	Serum/blood

ANA, Antinuclear antibody; anti-LKM, Anti-liver kidney microsomal antibody; BNP, Brain natriuretic peptide; CK, Creatine kinase; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; FENO, Fractional exhaled nitric oxide; TTG, Tissue transglutaminase.

Table 2. Proportion of publications by body system					
System	Proportion, %				
Allergy	2				
Cardiovascular	3				
Endocrine	6				
Gastrointestinal/Liver	10				
Hematologic	1				
Immune	1				
Infection/Sepsis	18				
Inflammation	8				
Kidney/Urologic	11				
Metabolic/Nutrition	14				
Neurologic	8				
Oncologic	9				
Pulmonary	5				
Toxin/Environmental	4				

Gaithersburg, Maryland, and Luminex Corporation, Toronto, Ontario, Canada) and the recent discovery of acute kidney injury biomarkers with clinical utility.²⁴⁻²⁶ The majority of publications (75%) described diagnostic biomarkers, recognizing, however, that biomarkers may have both diagnostic and prognostic utility; 70 publications (6%) were dedicated specifically to the discovery of new biomarkers for diagnosing and monitoring pediatric diseases. The most common biofluid used was blood (**Figure**). The number of open and closed pediatric biomarker trials registered on ClinicalTrials.gov increased to 568 as of December 2016.²⁷ Even though the increase in publications and trials is encouraging, the pace of studies in pediatric subjects pales in comparison with studies in adults, where the number of annual biomarker publications in 2010 was Download English Version:

https://daneshyari.com/en/article/8812521

Download Persian Version:

https://daneshyari.com/article/8812521

Daneshyari.com