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A B S T R A C T

We study the biodiversity problem for resource competition systems with extinctions and self-limitation effects.
Our main result establishes estimates of biodiversity in terms of the fundamental parameters of the model. We
also prove the global stability of solutions for systems with extinctions and large turnover rate. We show that
when the extinction threshold is distinct from zero, the large time dynamics of system is fundamentally non-
predictable. In the last part of the paper we obtain explicit analytical estimates of ecosystem robustness with
respect to variations of resource supply which support the R* rule for a system with random parameters.

1. Introduction

Existence and stability of large foodwebs, where many species share
a few of resources, is one of key problems in ecology (Hardin, 1960;
Hutchinson, 1961; Volterra, 1990) as well as extinctions and mass ex-
tinctions in such systems under climate changes (Rothman, 2017). In
this paper, we consider the model initiated in Kozlov et al. (2017a,
2016) describing an ecological system, where several (many) species
compete or fight for few limited resources.

The most typical examples are plant or plankton ecosystems.
Sunlight, water, nitrogen, phosphorus and iron are all abiotic essential
resources for phytoplankton and plant species. Resource competition
models link the population dynamics of competing species with the
dynamics of the resources. As it was mentioned in Huisman and
Weissing (1999) an attractive feature of resource competition models is
that they use the biological traits of species to predict the time evolu-
tion of competition. In fact, many rigorous results (Hsu, 2005; Smith
and Waltman, 1995; Tilman, 1980) show that, in general situation, a
single species survives and to obtain coexistence of many species one
needs very special assumptions to species parameters (mortalities and
resource consumption rates). This paradox (the so-called paradox of
plankton (Hardin, 1960; Hutchinson, 1961)) has received a great at-
tention in past decades (Roy and Chattopadhyay, 2007; Sommer and
Worm, 2002). Several ways to explain the extreme diversity of phyto-
plankton communities have been proposed. In particular, the proposed
mechanisms include spatial and temporal heterogeneity in physical and

biological environments, horizontal turbulence of ocean, oscillation and
chaos generated by several internal and external causes, stable coex-
istence and compensatory dynamics under fluctuating temperature in
resource competition, and toxin-producing phytoplankton (Roy and
Chattopadhyay, 2007; Sommer and Worm, 2002). Although the math-
ematical problem has been studied for more than two decades it is still
far from to be well-understood. The most of available results do not give
explicit estimates of biodiversity in terms of the fundamental ob-
servable ecosystem parameters (such as species mortality rates, rates of
resource consumptions, resource supply and resource turnover rate).

The main goal of this paper is to present such estimates. To this end
we consider dynamical equations are close to the model equations,
which considered in the seminal paper (Huisman and Weissing, 1999)
but extend that model in the two aspects. First, we take into account
self-limitation effects (which are important for plankton populations
(Roy and Chattopadhyay, 2007) and to explain stability of large food-
webs (Allesina, 2012; Allesina and Tang, 2012)). Roughly speaking
when we introduce a weak self-limitation we replace equations of
Maltus type on Verhulst type equations. Second, following
(Kozlov et al., 2016) we take into account species extinction thresholds,
however, in contrast to (Kozlov et al. 2016); Sudakov et al. (2017) we
consider here the case of a few resources. Mathematically, our approach
with extinction thresholds and self-limitation terms can be considered
as a regularization of resource competition models.

Our main results can now be formulated as follows. A summary of
the mathematical framework and the global stability results established
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earlier in Kozlov et al. (2017a,b) for the model with zero extinction
threshold is collected in Sections 2 and 3. In that case, a complete de-
scription of the system large time behaviour is obtained for systems
with sufficiently large turnover rates and without extinctions. More
precisely, the model exhibits the global stability: all positive trajectories
converge to the same equilibrium state. This result holds due to two
principal properties of our system. First, the system has a typical fast/
slow structure for large turnover rates. Second, the system obeys a
monotonicity property: if resources increase then species abundances
also increase. We recall the principal ideas of the proof at the end of
Section 3.2.

Next, if one allows even small positive extinction threshold, the
ecosystem behaviour exhibits new interesting effects. We study this in
Sections 4 and 5 below. We establish a weaker stability result: the limit
equilibrium state still exists but it depends on the initial ecosystem
state. This in particular implies that there can a priori exist several
distinct equilibrium states.

In Section 5, we establish explicit upper and below estimates of
biodiversity expressed in terms of the fundamental ecosystem para-
meters (such as species mortalities, resource consuming rate etc.). Re-
markably, the obtained estimates are universal for small extinction
thresholds and self-limitation parameters. We point out that these re-
sults use no assumptions on the system dynamics and do not use our
theorem on global stability.

In the part of the paper, we study large ecosystems with random
fundamental parameters. Here the main assumption is that the system
dynamics has no oscillating or chaotic regimes. Note that it follows
from Theorem 3.2, that the assumption is automatically holds if, for
example, turnovers rates are large enough. Recall that the R* rule (also
called the resource-ratio hypothesis) is a hypothesis in community
ecology that attempts to predict which species will become dominant as
the result of competition for resources. It predicts that if multiple spe-
cies are competing for a single limiting resource, then species, which
survive at the lowest equilibrium resource level, outcompete all other
species (Fisher et al., 1999; Tilman, 1982). In Section 6 we obtain a
complete description of parameters for survived species and establish
the validity of the R* rule for systems with random parameters. We
show that if the resources are limited and initially the number of species
is sufficiently large then only species with the fitness which is close to
maximal one can survive. In our model, the fitness is determined as the
resource amounts available for an organism.

Finally, in Section 7, we study sensitivity of those states with respect
to a change of environmental parameters. This allows us to essentially
extend recent results of Rothman (2017). Namely, not only the mag-
nitude of environmental changes and their rates determine how much
species will extinct but also the achieved biodiversity level, and some
species parameters. For example, ecosystems where the species para-
meters are localized at some values are less stable than ecosystems with
a large species parameter variation.

The basic notation

= …x t x t x t( ) ( ( ), , ( ))M1 the vector of species abundances
= …v t v t v t( ) ( ( ), , ( ))m1 the vector of resource abundances

μ ,i γi the mortality and the self-limitation
constant of species i

D ,j Sj the turnover rate and the supply of
resource vj

cij the content of resource j in species i
ϕi the specific growth rates of species i
Kij the half-saturation constant for resource j

of species i, page 4
x v( , )eq eq the special equilibrium state, page 5

X i
ext
( ) the extinction threshold of species i,

page 6

N t( )e the number of species which exist at the
time t, page 7

2. Preliminaries

Given ∈x y, n we use the standard vector order relation: x≤ y if
xi≤ yi for all 1≤ i≤ n, x< y if x≤ y and x≠ y, and x≪ y if xi< yi for
all i; +

n denotes the nonnegative cone ∈ ≥x x{ : 0}n and for a≤ b,
∈a b, n

= ∈ ≤ ≤a b x a x b[ , ] { : }n

is the closed box with vertices at a and b.
We consider the following system of equations:

= − − = …dx
dt

x ϕ v μ γ x i M( ( ) ), 1, , ,i
i i i i i (1)

∑= − − = …
=

dv
dt

D S v c x ϕ v k m( ) ( ), 1, , .k
k k k

i

M

ki i i
1 (2)

Here = …x x x x( , , , )M1 2 is the vector of species abundances and
= …v v v( , , )m1 is a vector of resource amounts, where vk is the resource

of kth type consumed by all ecosystem species, μi are the species mor-
talities, Dk>0 are resource turnover rates, Sk is the supply of the re-
source vk, and cik>0 is the content of kth resource in the ith species.
The coefficients γi>0 describe self-limitation effects (Kozlov et al.,
2017a; 2016; Roy and Chattopadhyay, 2007).

We consider general ϕj which are bounded, non-negative and
Lipshitz continuous

− ≤ −ϕ v ϕ v L v v( ) ( )͠ ͠j j j (3)

and

= ∈ ∂ +ϕ v k v( ) 0, for all and .k
m (4)

We use the norm notation = ≤ ≤x xmax i m i1 .
Furthermore, we shall assume that each ϕk(v) is a non-decreasing

function of each variable vj in +
M . This assumption means that as the

amount of jth resource increases all the functions ϕl also increase.
Conditions (4) and (3) can be interpreted as a generalization of the

well known von Liebig law, where

= ⎧
⎨⎩ +

⋯
+

⎫
⎬⎭

ϕ v r v
K v

v
K v

( ) min , , ,i i
i

m

im m

1

1 1 (5)

where ri and Kij are positive coefficients, = …i M1, , . Here, ri is the
maximal level of the resource consumption rate by ith species and Kij is
the half-saturation constant for resource j of species i.

The Liebig law can be considered as a generalization of Holling
functional response (Michaelis–Menten kinetics) for the case of many
resources. It assumes that the species growth is determined by the
scarcest resource (limiting factor). In particular, the Liebig law can be
applied to ecosystem models for resources such as sunlight or mineral
nutrients, for example, for plant ecosystems. For the case of a single
resource =m 1 and = ∈v v1  it reduces to the Holling response. In
this case, a typical example of ϕi satisfying all above conditions is

=
+

= …ϕ v r v
K v

i M( ) , 1, , .i
i

i (6)

For =γ 0i system (1), (2) was considered in the studies of the
plankton paradox, see, for example, Huisman and Weissing (1999).
Following Roy and Chattopadhyay (2007) and Kozlov et al. (2017a) we
assume γi>0 since it is known that self-limitation is essential for large
ecosystem (Allesina, 2012; Allesina and Tang, 2012) and plankton or
plant ecosystems can induce effects leading to self-limitation. We
complement system (1), (2) by non-negative initial conditions

= =x x v v(0) , (0) , (7)

where
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