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ARTICLE INFO ABSTRACT

The main result of this article is the crossing-effect between two fragments with no isolation on its sides. The
crossing-effect term is given to the phenomenon of relative inversion between the minimum sizes of two patches,
only varying the growth rate equally in both. This phenomenon was found from the determination of the
minimal size prediction for the general case of problems with two identical patches. This prediction is presented
in the explicit form, which allows to recuperate all the cases found in the literature as particular cases, namely,
one isolated fragment, one single fragment communicating with its neighborhood, a system with two identical
fragments isolated from the matrix but mutually communicating and a system of two identical fragments in-
serted in a homogeneous matrix. To find the crossing-effect, a particular case of the general solution is ap-
proached, which is a single fragment communicating with the matrix with different life difficulties on each side.
To verify this statement, it is proposed an experiment, which is an adaptation of other experiments in the
literature. The confirmation of the phenomenon presented in this work would be new and unexpected, on the
other hand, the refutation of this phenomenon would bring worries to the minimum size models using FKPP
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1. Introduction

Populations living in one (Nelson and Shnerb, 1998) or more (Lopez
and Bonasora, 2017) fragments have been the subject of study in many
natural sciences, in particular Ecology (Ferraz et al., 2007). In fact,
natural scientists such as physicists (Artiles et al., 2008; Kumar and
Kenkre, 2011), mathematicians (Cantrell et al., 1991; Hening et al.,
2017) and others (Skellam, 1951) have been studied models that can
describe, with some degree of approximation, the real phenomenon.

The study of fragmented regions problem was started by Skellam
(1951), which proposed a solitary fragment that can harbor life within
the patch while outside it, life is impossible. This problem was im-
proved by Ludwig et al. (1979). They introduced a non-hard region
outside the patch in the Skellam problem. Then, in the Ludwig problem,
the population in study can go outside the island, but cannot live there
forever. The improvement of Ludwig et al. brought the need of a
smaller fragment than the one found by Skellam to enable stable life in
the system with only one fragment. The natural sequence to Ludwig
work is the introduction of another fragment in the system. Now, there
are two fragments communicating by a region not favorable to life, but
not infinitely hard, in such a way that is possible population elements
pass from one fragment to another. In this sense, there are previous
studies for the implicit form to minimal size fragments that enables life
for a more general case (Pamplona da Silva and Kraenkel, 2012). The
explicit form for this minimal size was presented by Kenkre and Kumar
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(2008) to the case where the life difficulty was the same outside the
system and between the patches.

In this article is proposed one general analytic prediction to minimal
size of each fragment in a system of two identical patches. This result
enables to confirm a previous result (Pamplona da Silva and Kraenkel,
2012), here called “crossing-effect”. The crossing-effect term is related
to the intersection of two curves in the graphic of fragment size versus
growth rate. The crossing of the curves may seem only a mathematical
curiosity, but it is more than it.

In order to better explain the crossing-effect phenomenon associated
to this crossing of the two curves, it is used two fictitious fragments, W
and Z, with very specific and different characteristics for the same
species and the same growth rate ay. For small ay, W can provide the
stable life inside it with a smaller size than Z. This fact is due to other
parameters of the fragments, as it is well established in the literature
(Kenkre and Kumar, 2008; Pamplona da Silva and Kraenkel, 2012) and
is even intuitive. Knowing that W, for small ao, should be smaller than
Z, the novelty here presented is that if the growth rate is increased,
maintaining the other characteristics of the fragments, W should be
greater than Z to provide life within themselves. Briefly, the increase of
the growth rate within the fragments produces a relative inversion in
the minimum sizes of the fragments.

The predictions proposed above were found in one dimension,
where the focus was the minimum length for life existence. In two di-
mensions, the study would concern the minimal area (Azevedo and


http://www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2018.06.024
https://doi.org/10.1016/j.ecolmodel.2018.06.024
mailto:pamplona@unifal-mg.edu.br
https://doi.org/10.1016/j.ecolmodel.2018.06.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2018.06.024&domain=pdf

D.J. Pamplona da Silva

Qo

—-L2| o

—L—s

(b)

Fig. 1. Representation of two identical patches with length L and internal
condition a; immersed in a matrix with life difficulty h, separated by a region
with life difficulty p and (a) of length s that (b) approaches a non-symmetric
single patch when s — oo,

Kraenkel, 2012) and it would be necessary to explore the geometry of
the fragment (Kenkre and Kumar, 2008), which would result in another
scope of work, not addressed in this paper. All cases mentioned pre-
viously use (Fisher, 1937) Fisher-Kolmogorov—Petrovskii—Piskunov
(FKPP) equation to describe the behavior of a population density u(x, t),
in the time (), moving in the space (x), governed by the growth rate a
and contained by the saturation rate b. In one-dimensional it is given by
du ou

— =D— + a(x)u — bu?,

ot ox? (@]

where D is the diffusion coefficient. The parameter a is the growth rate
and can be used to describe the environmental conditions of a region.
The parameter b represents a population intraspecific competition
which defines the maximum population that can occupy a specific
fragment. Parameter b is closely linked to the carrying capacity.

2. Mathematical predictions

The mathematical purpose of this article is, starting from Eq. (1), to
find the general case to minimal size of each patch in a system of two
identical patches — see Fig. 1a — and recover several cases addressed in
the literature. In addition, it is found the minimal size to single non-
symmetric patch able to sustaining life.

Eq. (1) does not have general solution for an arbitrary function a(x)
at any time t, but there are two considerations that can help to reach the
goal without finding the general solution. The first one considers the
stationary situation of Eq. (1), because this represents the situation after
the transient solution, when there is a stable solution (population) or
the solution is null (extinct population). The second consideration is to
suppress the nonlinear term (—u?). One justification for this con-
sideration is that, if population extinction occurs without considering
the saturation, the population will die more quickly when this factor is
considered. In addition, intraspecific competition is important when the
population is large, however it is insignificant when the population is
small. Thus, once when the patch size is close to its minimum size, a
small stable population is expected and the saturation term may be
disregarded. These two considerations are in accordance with the
Ludwig ideas (Ludwig et al., 1979), reinforced by Kenkre and Kumar
(2008) and previous works (Pamplona da Silva and Kraenkel, 2012;
Pamplona da Silva et al., 2017) resulting an ordinary differential
equation, that can be written as follow:

2
D[jix—q; +a(x)® = 0. @

By choosing the function a(x) as a piecewise constant, Eq. (2) can be
solved easily in any constant piece. It describes a heterogeneous region
(Kenkre and Kumar, 2008; Kenkre and Kuperman, 2003; Kraenkel and
Pamplona da Silva, 2010; Pamplona da Silva and Kraenkel, 2012),
where a(x) > 0 represents a patch (life region) and a(x) < 0 re-
presents a dead region. Note that there are space heterogeneities, but
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the condition inside each patch is homogeneous and the outside con-
ditions are also homogeneous. Then, there are only abrupt changes in
the environment condition and they occur in the frontiers between a
patch and a death region. The generalization of two communicating
identical patches is represented by Fig. 1a.

In order to reach the main mathematical objective of this work,
which is to find the explicit form of the minimum size to each fragment
represented in Fig. 1a that allows the existence of stable life inside the
patch, it is solved the linear equation (Eq. (2)) in each region where a(x)
is constant and it is imposed that the function and its first derivative are
continuous at the boundaries between fragments and inhospitable re-
gions, following the ideas of Ludwig et al. and their successors (Kenkre
and Kumar, 2008; Ludwig et al., 1979; Pamplona da Silva et al., 2017).

These conditions are applied only for the positive values of x (x = s
and x = L + s) because, from symmetry, the negative side returns the
same conditions. In order to simplify the notation, it is introduced

a

o= ,—, Va
D 3
Solutions to Eq. (2) are:
®;(x) = A cosh(apx), inregionI (—s < x < 5); @
®y(x) = B cos (ocaox + ¢), inregionIl (s <x < L + s); (5)
Ppp(x) = Ce™*, inregionIII (x > L + s). 6)

Next, it is imposed the matching condition upon ®(x) at each
boundary. In fact:

® At x = s, the condition is given by ®y;(s) = ®(s), then:

Bcos (aaos + ¢) = A cosh(a,s). )
® At x = L + s, the condition ®y(L + s) = ®y(L + s) gives:
B cos (cxaoL + QgyS + ¢) = Ce @n(@+9), 8)

Not only the function ®(x) should be continuous but also its deri-
vative. Hence:

e In x = s, immediately:

— Bay, sin (aaos + ¢) = Aap sinh(ays). 9

elnx=L+s:

— Bag, sin (ocaOL + otgyS + ¢) = —Cayeth@L+s), (10)

Dividing Eq. (9) by Eq. (7), it follows:
— Oq, tan (aaos + ¢) = a, tanh(a,s)=>

a
— 0tgys — ¢ = arctan| — tanh a,s |.
Aag

11
Dividing Eq. (10) by Eq. (8), it results:

— Qg tan (ocaOL + AgyS + ¢) = —ap=>

a
QgL + agys + ¢ = arctan(—h}

Qg

(12)

Egs. (11) and (12) can be added. The convenient form of the result
from this operation is:
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