Accepted Manuscript

Title: Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic

Authors: Esmaeel Darezereshki, Ahmad khodadadi Darban, Mahmoud Abdollahy, Ahmad Jamshidi-Zanjani

 PII:
 S2215-1532(18)30038-2

 DOI:
 https://doi.org/10.1016/j.enmm.2018.04.002

 Reference:
 ENMM 142

To appear in:

 Received date:
 31-1-2018

 Revised date:
 17-3-2018

 Accepted date:
 13-4-2018

Please cite this article Esmaeel Darezereshki, Ahmad khodadadi as: Darban, Mahmoud Abdollahy, Ahmad Jamshidi-Zanjani, Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic, Environmental Nanotechnology, Monitoring and Management https://doi.org/10.1016/j.enmm.2018.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: kinetics and thermodynamic

Esmaeel Darezereshki¹; Ahmad khodadadi Darban^{*,1}; Mahmoud Abdollahy¹; Ahmad Jamshidi- Zanjani¹

1- Department of Mineral Processing, Tarbiat Modares University, Tehran, Iran.

Highlight

- Nano-magnetite synthesized from iron tailings by reduction-precipitation method.
- The synthesized nanoparticles were ferromagnetic at the room temperature.
- In comparison with Zn^{2+} and Mn^{2+} , Cu^{2+} affected the As⁵⁺ adsorption noticeably.
- Arsenate adsorption decreased in the presence of Fe³⁺ and Al³⁺ at pH 2.5.
- The prepared nano-Fe₃O₄ can be reused in consecutive adsorption-desorption cycles.

^{*}Corresponding author: Tel: <u>+98 21 82883399 Fax: +98 21 82884324</u> E-mail: akdarban@modares.ac.ir

Download English Version:

https://daneshyari.com/en/article/8855580

Download Persian Version:

https://daneshyari.com/article/8855580

Daneshyari.com