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H I G H L I G H T S

• SOM spatial distribution in a highly
exploited agricultural area (1147 km2)

• An extensive (4825 samples) and spa-
tially dense data set is available.

• Geostatistical mapping: global interpo-
lation versus stratified interpolation

• Insights on extrinsic and intrinsic
influencing factors on SOM spatial dis-
tribution

• At regional scale the SOM spatial pat-
terns follow the main geological
domains.
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Spatialmapping of soil organicmatter (SOM) and evaluation of the related natural and anthropic influencing factors
are crucial tomonitor the extent of degraded land and the evolution of soil functions. The objective of thiswork is to
study the spatial distribution of SOM in a highly exploited agricultural area in the Baranja Region (Croatia). The spa-
tially dense dataset available (4825 top-soil samples from 0 to 30 cm) allowed to produce reliable SOMmaps using
geostatistical interpolation kriging algorithms and to study the relationships with possible influencing factors. The
interpolation has been conducted by means of two approaches. In one approach, the overall data set is considered
for computing a global variogram and performing a direct interpolation of SOM values. In the second approach, the
data are stratified according to two different geological and morphogenetic domains, Holocene Domain (HD) and
Pleistocene Domain (PD), and a distinct geostatistical analysis is performed in each domain. The results showed
that average SOM in the studied region was 2.29%, indicating a future need for adopting sustainable soil manage-
ment practices in this region. SOMwas significantly higher in HD (2.64%) than PD (1.97%) domain. SOM in PD gen-
erally had amuch lower global variability. Global dataset analysis reveals that regional intrinsic factors prevail over
local intrinsic and extrinsic factors in determining SOMspatial patterns. In contrast, the stratified approach canfilter
the effect of regional variability related to the main geological and geomorphological setting. The structural spatial
correlation in PD is weaker than in HD, as manifested by spatial patches of low and high SOM content with smaller
extension in PDwith respect to HD. The strong relationships between SOM spatial patterns and geological/geomor-
phological factors suggest the possibility of adopting finer subdivision criteria in future research.
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1. Introduction

Soils are the largest terrestrial carbon sink and play a key role in car-
bon sequestration (Lal, 2010; Pires et al., 2017). Soil organic matter
(SOM) content plays a crucial role in improving aggregate stability,
water infiltration and nutrient availability (Stockmann et al., 2013;
Agegnehu et al., 2016). SOM tends to be high in areas with high mean
annual precipitation, low mean annual temperature (Muñoz-Rojas
et al., 2013; Olaya-Abril et al., 2017) and clay soils (Parras-Alcántara
et al., 2015). SOM is a key factor in determining soil quality and produc-
tivity (de Paul Obade and Lal, 2016).

Soil management significantly affects SOM, especially in agricultural
areas. Intensive grazing (Worrall and Clay, 2012), conventional tillage
(Bogunovic et al., 2017a), poor crop rotation, intensive land use
(Laudicina, 2015;Wang et al., 2017), and the intensive use of herbicides
and pesticides (Sebiomo et al., 2011) all have a negative impact on SOM
quantity and quality. Accordingly, sustainable practices are needed to
decrease the risk of soil degradation of agricultural land. To adopt sus-
tainable agriculturalmanagement practices, it is necessary to character-
ize SOM spatial distribution. The mapping and modelling of soil
properties is crucial to understanding the processes and factors
influencing soil characteristics and identifying patterns of soil degrada-
tion (Brevik et al., 2016; Pereira et al., 2017). Moreover, evaluating the
impact of intensive agricultural practices on SOM spatial distribution,
at both the local and regional scale, is important for determining the ex-
tent to which the anthropic signature superimposes the natural factors
of soil formation.

SOMspatial distribution is the result of the interaction betweenmul-
tiple variables. Consequently, it can be highly variable in space, espe-
cially in agricultural areas, where anthropic disturbances can increase
the complexity of SOM spatial distribution. Unfortunately, SOM map-
ping is generally not an easy task due to requiring very spatially dense
data sets and the difficulty of modelling the relationships with influenc-
ing factors. Often, the spatial sampling density of SOM field measure-
ments is not sufficient enough to permit reliable mapping of SOM for
the studied area. To overcome these issues, SOM spatial mapping can,
in some circumstances, be improved by using secondary variables as co-
variates by means of geostatistical and machine learning approaches
(e.g., de Brogniez et al., 2015; Yigini and Panagos, 2016; Pereira et al.,
2017). Unfortunately, very often the potential covariates to be used as
auxiliary information, such as precipitation and temperature, have a
coarser spatial resolution than available SOM data, or are not easily
available (e.g. soil and vegetation characteristics). Other variables that
can be extracted from a digital elevation model (DEM) can be weakly
correlated with SOM. These limitationsmay reduce importantly the ex-
planation capacity of the auxiliary variables. From this viewpoint, the ef-
forts inmapping of SOC at the European scale using secondary variables,
conducted by Yigini and Panagos (2016) and De Brogniez et al. (2015),
are emblematic. In these studies the use of secondary variables permit-
ted to obtain satisfactory results, considering the wide spatial coverage
and the characteristics of available data; however, the resulting R2 of the
regression models were quite low, indicating, as stated by the authors,
that a relevant portion of variance remains unexplained. Despite this,
there are numerous studies involving different environments
(e.g., forest, grasslands, etc.) and spatial scales (Guo et al., 2015; Were
et al., 2015; Qiu et al., 2016). When secondary/auxiliary variables can
be used as covariates, the accuracy of SOMpredictions can be improved,
as observed in several studies (Weismeier et al., 2011; Zhang et al.,
2012; Bogunovic et al., 2017b). However, in others, the consideration
of auxiliary variables did not improve spatial prediction (Song et al.,
2016; Rosemary et al., 2017), as a consequence of the lack of correlation
or due to spatial non-stationarity in the correlation between SOM and
the secondary variables. This situation can occur in agricultural areas,
where intensive soil management practices can greatly influence the
spatial distribution of SOM, thereby increasing the complexity of the re-
lationship between SOM and secondary variables.

In this context, the present research related to the spatial distribu-
tion of SOM in the agricultural landscape of Pannonia region (Croatia),
an area under extreme ecological pressure due to intensive cropping
practices, is particularly interesting. Firstly, at European scale there is a
general lack of information on soil properties spatial distribution cover-
ing the Croatia (e.g., Yigini and Panagos, 2016). Then, for the studied
area, with an extent of 1147 km2, a very spatially dense dataset
consisting of 4825 top-soil samples (0–30 cm) is available. This excep-
tionally dense dataset allows a reliable spatial analysis and mapping of
SOM and to analyse the relationships of SOM with possible influencing
factors. Finally, differently from the above cited studies, the spatial dis-
tribution and the spatial variability of SOM seems related more to the
local geological and morphogenetic framework of the area (Buzjak
et al., 2013; Velić and Vlahović, 2009) than to climatic or DEM derived
secondary variables.

To map SOM and study its spatial variability, we followed a
geostatistical approach (Cressie, 2015; Goovaerts, 2001; McBratney
et al., 2003), testing two alternatives approaches based on an ordinary
kriging interpolation algorithm. In one approach, we consider the over-
all data set for computing a global variogram and perform a direct inter-
polation of SOM values. In the second approach, we stratify the data
according to two different geological and morphogenetic domains and
perform a distinct geostatistical analysis in each domain. The pros and
cons of the two approaches in terms of interpolation accuracy and inter-
pretative potential are discussed. Finally, the SOMmapproduced is used
to interpret the SOM distribution in the region, highlighting possible
natural and anthropic forcing. The resulting map can also provide sug-
gestions for soil quality recovery practices that should be adopted to im-
prove agriculture sustainability.

2. Materials and methods

2.1. Study site

The study site is located in eastern Croatia in the Baranja region
(18°20′–18°58′ E, 45°32′–45°55′ N) and covers an area of 1147 km2

characterized by intensive agriculture (Fig. 1). The climate is classified
as temperate continental and the mean annual temperature is 10.8 ±
0.61 °C, with average annual precipitation of 652 ± 193 mm
(1961–1990, Osijek meteorological station). July is the warmest
month (21 °C), while the coldest is January (−1.3 °C). The highest
amount of precipitation occurs during June (88 mm), while the lowest
occurs in February (40.3 mm).

The region is characterized by a gentle topography with elevations
ranging from62m to 244m (Fig. 1b). The DEM analysis (smoothed ver-
sion of European Digital Elevation Model EU-DEM, version 1.1, 2016)
highlights the existence of distinct morphological domains which are
related to themainmorphogenetic (Buzjak et al., 2013) and lithological
units (Velić and Vlahović, 2009) of the region. The boundaries of the
geological units are in general easily detectable given that they corre-
spond to abruptmorphological transitions evident in the DEM (Fig. 1b).

The first domain, the HD, is represented by terrains in the low eleva-
tion plains (Fig. 1b, c). It is composed of Holocene sediments, represen-
tative of alluvial deposits of the Drava and Danube rivers and to a lesser
extent, of lake deposits along the elongated depression near the
Karašica stream. The terrains are the lowest elevations in the study
area, corresponding to the fluvial plains of Drava and Danube rivers. In
this area, a high degree of lithological heterogeneity should be expected
given the presence of fluvial paleo-channels, leading to transitions from
coarse sediments corresponding with paleo-channels, to finer sedi-
ments corresponding with distal deposits. The main soil types in this
domain are Fluvisols and Gleysols.

The second domain, the PD, is represented by higher elevation ter-
rains, corresponding to terraces and hills (Fig. 1b, c). It is composed of
Pleistocene sediments representative of mainly loess deposits and, to a
lesser extent, of terraced alluvial and colluvial deposits. These terrains
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