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HIGHLIGHTS GRAPHICAL ABSTRACT

Three analytical approaches for diverse
-omics datasets are proposed. A
These approaches were used to explain
the features of Odaiba in Tokyo Bay.
Integrated use of the proposed ap-
proaches can be used for highlighting
key factors.
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comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be

Editor: Daniel Wunderlin employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are ap-

plied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine
Keywords: learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba
Multi-omics water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping ap-
Metabolome proach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other me-
Microbiome tabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally,
Multidisciplinary approaches forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae

Machine learning

. (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric
Vector autoregressive model

acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to
examine many biological, chemical, and environmental physical factors to analyze surface water.
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1. Introduction

Surface water is an essential part of aquatic ecosystems, including
freshwater, marine, and estuarine. Aquatic ecosystems provide numer-
ous benefits, such as a diverse biological production, safe freshwater,
aesthetics, and recreation. However, aquatic ecosystems have been
globally under threats from climate change and pollutants (Capon
et al., 2015; Islam and Tanaka, 2004; Jambeck et al., 2015; Osterblom
et al.,, 2017; Seitzinger and Phillips, 2017; Worm, 2015). Both these fac-
tors can disrupt self-regulation of aquatic ecosystems that maintains
structural and functional dynamics within normal ranges, thereby lead-
ing to profound changes in the ecosystem (Breitburg et al., 2018;
Halpern et al., 2012). For the management of complex systems associ-
ated with aquatic ecosystems, it is necessary to consider multiple fac-
tors, including environmental physical factors, chemical factors,
biological factors, and human factors, using diverse approaches and in-
formation (Burthe et al., 2016; Cajaraville et al., 2016; Cooper et al.,
1994; Lynch et al,, 2015). Based on advances in information and omics
technology (Moran et al., 2016), of the ten dimensions for integrated as-
sessment and modeling (Hamilton et al.,, 2015), methodological and dis-
ciplinary dimensions are becoming more important.

Although the omics revolution has contributed to environmental tox-
icology (Bahamonde et al., 2016; Martyniuk and Simmons, 2016), meta-
omics studies, including metagenomics, metatranscriptomics,
metaproteomics, and metabolomics, were not incorporated in mathe-
matical models to understand ecosystems until recently (Reed et al.,
2014). A recently proposed modeling framework by Reed et al. (2014,
2015) links the functional genes of microbes and biogeochemical pro-
cesses in water. The model was further developed by Louca et al.
(2016) to integrate the sequence information of DNA, mRNA, and pro-
teins with geochemical processes; their model describes the spatiotem-
poral dynamics of the concentrations of eight metabolites (NHZ, O,,
NO3, S03 ™, H,S, etc.) and six DNA profiles in the analyzed water. Another
attempt to utilize multi-omics data is a data-driven approach. Ogawa
etal. (2014) proposed biogeochemical typing using the 16S and 18S ribo-
somal RNA (rRNA) sequences via next-generation sequencing (NGS), ion
data detected using inductively coupled plasma optical-emission spec-
troscopy (ICP-OES), metabolite data detected using Fourier transform in-
frared spectroscopy and nuclear magnetic resonance (NMR).

Among the target chemicals of omics studies, metabolites can de-
scribe the final products of transcription and translation, although
there are some limitations because of their instability (Martyniuk and
Simmons, 2016). Therefore, metabolites are closely related to pheno-
type and can reflect the surrounding environment of organisms. NMR
was previously used for untargeted analysis of metabolite profiles for
various environmental samples (Kikuchi and Yamada, 2017; Kikuchi
et al., 2018; Simpson et al., 2018). Examples include Atlantic salmon
(Salmo salar L.; Aursand et al, 2009), zebra mussel (Dreissena
polymorpha; Lee et al., 2010), Araliaceae (Panax ginseng; Kang et al.,
2008a; Kang et al., 2008b), grape varieties for wine (Godelmann et al.,
2013), and green tea (Camellia sinensis; Watanabe et al., 2015). The
studies of these profiles revealed the geographical origins of the prod-
ucts on a small scale. In addition, metabolic analysis was previously ap-
plied to provide strong discriminatory power to the evaluation of
environmental variation and diversity in aquatic ecosystems (Asakura
et al., 2014; Date and Kikuchi, 2018; Wei et al., 2018; Yoshida et al.,
2014).

Recent work on early warning indicators emphasized the require-
ment for reliable tools to assess ecosystem resilience (Gsell et al.,
2016), and additional efforts to integrate microbial ecology and geo-
chemistry are required to better understand aquatic ecosystems. To
this end, an integrated strategy linking multi-omics approach to utilize
diverse types of information can screen for important features of surface
water for use in modeling.

To investigate surface water features in a targeted area, we devel-
oped an integrated strategy linking three data-analytic approaches:

step-1) machine learning, step-2) factor mapping, and step-3)
forecast-error-variance decomposition (FEVD). These approaches uti-
lize datasets that vary in sample size and analyzed factors. We applied
our approaches to explore the features of bay water surrounding
Odaiba, Tokyo, Japan, as a case study.

2. Materials and methods
2.1. Overview

We developed three data-analytic approaches and applied each to
different datasets (Fig. 1). The machine learning approach was designed
for datasets containing a relatively large number of samples with a small
number of variables. Herein, this approach was applied to an ICP-OES
data measuring 10 inorganic ions from 681 surface water samples col-
lected from various places within Japan, including Lake Imba (Chiba
Prefecture) and Iriomote Island (Okinawa Prefecture) (Table S1) and
used to compare this data with those from other locations (see
Section 2.3 for details). The factor mapping approach was designed to
spatially or temporally analyze continuous data containing a relatively
large number of variables. Herein, this method was applied to analyze
three datasets describing ICP-OES-measured inorganic ions and NMR-
measured metabolites in surface water from Odaiba and Lake Imba
(Chiba Prefecture) sampled monthly and surface water sampled along
the Kuira River on Iriomote Island (Okinawa Prefecture) (see
Section 2.2 for detailed sampling locations) and compared seasonal dy-
namics between the locations (see Section 2.4 for details). The FEVD ap-
proach was designed to temporally analyze continuous datasets
containing a large number of variables. This method was applied to a
larger dataset from Odaiba that included NGS-analyzed small-subunit
(18S and 16S) rRNA sequence data and physical information, as well
as inorganic ion and metabolite data used in the factor mapping ap-
proach, for a brief investigation of biological correlations within Odaiba
samples (see Section 2.5 for details). The R scripts used for our analysis
can be found at http://dmar.riken.jp/Rscripts/. In the following subsec-
tions, we explain the methods used to obtain the data used for the
Odaiba case study (Sections 2.2) and our three data-analytic approaches
(Sections 2.3-2.5).

2.2. Sampling and processing

The 681 water samples (50-mL each) were collected for ICP-OES
analysis (see Supplementary Methods Section 1 for details) from 15
prefectures in Japan, from Okinawa in the southwest to Hokkaido in
the northeast, between 2010 and 2016 (Table S1 and Fig. 2a). Additional
volumes of water were collected for NMR analysis (see Supplementary
Methods Section 2, Table S2, and Fig. S1 for details) and NGS analyses
(see Supplementary Methods Section 3 for details) using either a bucket
(at a 1-m depth) or a Bandon water sampler (for samples from >1-m
depth) at 14 selected locations. These samples were subsequently fil-
tered using a 0.2-um Durapore filter membrane (Millipore, Billerica,
MA, USA) until the membrane clogged. The collected water, filters,
and filtered water were stored in a 4 °C cooler box and transported to
the laboratory, where they were stored at —80 °C.

The sampling locations included Odaiba [35.618180°N,
139.773110°E (WGS84; sample IDs of w549-w620 in Table S1)], Lake
Imba (35.747494°N, 140.181877°E; w637-w648), and 12 locations on
Iriomote Island [along the Kuira River, from the upper stream to its
downstream areas, including Funauki Bay and offshore (Fig. 2b and c),
including R1 (24.29058°N, 123.74693°E; w621), R2 (24.29123°N,
123.74757; w622), R3 (24.29481°N, 123.74757°E; w623), R3.5
(24.30095°N, 123.74678°E; w624), R4 (24.30251°N, 123.74746°E;
w625), R5 (24.30951°N, 123.74916°E; w626), R6 (24.31363°N,
123.75034°E; w627), M1 (24.31071°N, 123.75259°E; w628), F1
(24.32843°N, 123.74301°E; w629, w630 and w633), F2 (24.33351°N,
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