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A B S T R A C T

Attributes that describe forest structure, such as height, canopy cover, volume, and biomass, are required to
inform forest inventories and monitoring programs. Light Detection and Ranging (lidar) has been successfully
demonstrated as a means to derive a suite of forest structure attributes at the plot level; however, these ac-
quisitions are often constrained to limited spatial extents and to a given point in time. Sample based approaches
for model development can accommodate the spatial limitations of lidar acquisitions when characterizing large
areas. The combination of lidar plot data and time-series satellite imagery is well suited to provide spatially
extensive, and temporally dense, information on forest structure and related dynamics over very large areas. In
this research, we combine lidar plot-derived information with Landsat pixel-based composites to produce annual
forest structure estimates from 1984 to 2016 over 650million ha of Canada's forest ecosystems using a nearest
neighbor imputation approach with a Random Forests-based distance metric. Imputed variables included lidar
metrics of height (e.g., mean height, standard deviation of height) and cover, as well as area-based modelled
inventory estimates of Lorey's height, basal area, stem volume, and biomass. Models were validated using re-
served validation plots, with model R2 ranging from 0.62 to 0.64 for lidar metrics of height and cover, and R2 of
0.67, 0.68, 0.71, and 0.70 for Lorey's height, basal area, volume and biomass, respectively. Unique to this study
was the assessment of model extension through time, with model performance for imputing lidar metrics
evaluated at the forest stand-level using independent lidar data representing a latitudinal gradient of forest
conditions and that was not used in model development. The period evaluated was 2006–2012, with R2 values
ranging from 0.36 to 0.66 for height metrics, and 0.47–0.77 for cover metrics. Ultimately, we show how deriving
forest structural estimates on an annual basis enables the analysis of both the dynamics and regional trends of
undisturbed forest, as well as regenerating stands following stand-replacing disturbances (i.e., fire, harvesting).

1. Introduction

Monitoring plays a foundational role in supporting sustainable
forest management, and informing the development of policies aimed
at preserving and maintaining ecosystem services and biodiversity in
forests while concurrently accommodating human needs (Daily, 1997).
Moreover, spatially-explicit estimates of forest attributes inform re-
porting activities by providing data for forest (White et al., 2014) and
carbon (Boisvenue et al., 2016) monitoring programs. National forest
inventory programs are typically designed to produce long-term data in
support of forest monitoring (Kangas and Maltamo, 2006; MacDicken,

2015). Many of these programs, however, are sample-based and aspa-
tial, and cannot provide spatially-explicit inputs for modelling unless
they are combined with other forms of inventory data or remotely
sensed data (e.g., Beaudoin et al., 2014; Tomppo et al., 2009). Thus,
there is a need for spatially-explicit forest monitoring information col-
lected at a resolution suitable for capturing anthropogenic impacts, and
supporting a range of scientific and policy elements. Furthermore, the
capacity to generate this information retrospectively can provide useful
baseline information for understanding forest dynamics (White et al.,
2017) and for modelling potential vulnerabilities to climate change
(Price et al., 2013). In addition, a time-series of forest structure
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attributes including height, canopy cover, volume, and biomass, can
also inform on relative trends in forest growth and condition, as well as
post-disturbance forest recovery (Bartels et al., 2016; Frolking et al.,
2009; Masek et al., 2011). Further, such a time-series recording forest
structure can fill critical information gaps for unmanaged forests, where
there exists a paucity of spatially exhaustive forest inventory informa-
tion (Gillis et al., 2005).

Satellite programs with medium spatial resolution (10–100m)
sensors (Belward and Skøien, 2014), such as those of the Landsat mis-
sion, provide data for capturing and characterizing both status and
change over terrestrial ecosystems at human scales (Wulder et al.,
2008b). Image acquisitions from Landsat sensors including Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Opera-
tional Land Imager (OLI) have the spatial grain (30m spatial resolu-
tion), spectral bands (visible to short-wave infrared), and revisit time
(single sensor, 16 days) required to study vegetation trends with an
annual/seasonal frequency (Kovalskyy and Roy, 2013). Since the
launch of Landsat-7 in 1999, Landsat has effectively had an 8-day re-
visit based upon having two satellites in orbit at any given time. The
opening of the multi-decadal Landsat archive (Woodcock et al., 2008),
combined with the systematic production of science-supported, ana-
lysis-ready data products (e.g., surface reflectance, Vermote et al.,
2016) has accelerated a number of methodological developments that
have advanced satellite-based monitoring activities (Hansen and
Loveland, 2012; Wulder et al., 2012a). The process of using analysis
ready data, high performance computing, and robust automated algo-
rithms to characterize large areas over time is reviewed in Wulder et al.
(2018).

Previously, image compositing methods were more commonly ap-
plied to coarse spatial resolution data sources (Cihlar, 2000; Holben,
1986), which were freely available and had a frequent revisit rate. Free
and open access to analysis-ready data led to the application of image
compositing approaches to Landsat data (Roy et al., 2010). Image
compositing allows clear observations for a given pixel to be selectively
used from otherwise cloudy images, resulting in the generation of
seasonal or annual, gap-free, composites (Griffiths et al., 2013;
Hermosilla et al., 2015a; White et al., 2014). These best-available pixel
(BAP) composites (White et al., 2014) result in a data space where the
spectral bands can be considered representative of a given point in time
(e.g., year, season). Furthermore, using surface reflectance derived from
a radiometrically calibrated image data source (Markham and Helder,
2012) results in pixel-level values for a given land cover or forest
structural condition that can be considered as temporally invariant

(Fekety et al., 2014), enabling the application of models through time
and space (Song et al., 2001). Thus, Landsat data have enabled the
generation of wall-to-wall estimates of forest structure based on the
temporal analysis of the spectral trends and/or the change information
provided by Landsat time series data (Bolton et al., 2018; Matasci et al.,
2018; Pflugmacher et al., 2014, 2012), and to extend these estimates
through time (Deo et al., 2017).

Nearest neighbor (NN) imputation is a demonstrated methodolo-
gical framework to relate environmental-based predictors and in-
ventory-related attributes (Eskelson et al., 2009; Ohmann and Gregory,
2002), as well as Landsat data and lidar-derived attributes (Zald et al.,
2014). With a 1-NN structure, imputation has the advantage of as-
signing a set of measured attributes that actually occur in a forest stand
(at a given donor plot location), ensuring prediction of realistic canopy
conditions (Hudak et al., 2008). Imputation has been the primary
methodological building block of prior studies that investigated single-
year forest structure mapping (Tomppo et al., 2009; Zald et al., 2016).
A number of studies have shown promising results in extending im-
putation models to predict forest structure through time, demonstrating
the opportunities offered by the generated outputs to inform the study
of forest growth and post-disturbance recovery (Deo et al., 2017; Fekety
et al., 2014).

In previous work, we applied an imputation approach using lidar
plots and Landsat data and generated spatially explicit, wall-to-wall
estimates of ten key forest structural attributes (see Table 1) across
Canada's boreal forest for a single year (2010) (Matasci et al., 2018). In
this current study, we extend the large-area forest attribute imputation
model presented in Matasci et al. (2018) through both time
(1984–2016) and space (integrating data from the hemi-boreal zone,
see Fig. 1), thereby generating annual estimates of the same set of lidar-
based metrics and forest structural attributes for the entire treed extent
of Canada's forested ecosystems over 33 years. Our objectives were
three-fold: (i) to demonstrate the temporal and spatial extension of the
imputation model using a time-series of annual surface reflectance
image composites and samples of airborne lidar; (ii) to demonstrate the
robustness of the outputs by validating the resulting forest structural
estimates using a decade of independent lidar data acquisitions across a
latitudinal range of forest conditions; and (iii) to highlight the potential
for scientific insights related to growth and recovery over large areas,
which are enabled through the use of the time-series of forest structure
developed herein.

Table 1
Forest structural variables estimated in this study. Lidar returns elevation values are normalized to the ground surface.

Nature of variables Forest structural variable Variable name Units Description

Extracted directly from
point cloud

Mean canopy height elev_mean m Mean height of lidar first returns
Standard deviation of canopy height elev_sd m Standard deviation of first returns height
Coefficient of variation of canopy height elev_cv – Coefficient of variation of first returns height
95th percentile of canopy height elev_p95 m 95th percentile of first returns height
Canopy cover cover_2m % Percentage of first returns above 2m
Canopy cover above mean height cover_mean % Percentage of first returns above the mean height

Modelled inventory
attributes

Lorey's mean height loreys_height m Average height of trees weighted by their basal area
Basal area basal_area m2/ ha Cross-sectional area of tree stems at breast height. The sum of the cross-

sectional area (i.e., basal area) of each tree in square metres in a plot,
divided by the area of the plot.

Gross stem volume stem_volume m3/ ha Individual tree gross volumes are calculated using species-specific allometric
equations. Gross total volume per hectare is calculated by summing the
gross total volume of all trees and dividing by the area of the plot.

Total aboveground biomass ag_biomass t/ha Individual tree total aboveground biomass is calculated using species-
specific equations. Aboveground biomass per hectare is calculated by
summing the values of all trees within a plot and dividing by the area of the
plot. Aboveground biomass may be separated into various biomass
components (e.g., stem, bark, branches, foliage).
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