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A B S T R A C T

We developed an approach to estimate snow water equivalent (SWE) through interpolation of spatially re-
presentative point measurements using a k-nearest neighbors (k-NN) algorithm and historical spatial SWE data.
It accurately reproduced measured SWE, using different data sources for training and evaluation. In the central-
Sierra American River basin, we used a k-NN algorithm to interpolate data from continuous snow-depth mea-
surements in 10 sensor clusters by fusing them with 14 years of daily 500-m resolution SWE-reconstruction
maps. Accurate SWE estimation over the melt season shows the potential for providing daily, near real-time
distributed snowmelt estimates. Further south, in the Merced-Tuolumne basins, we evaluated the potential of k-
NN approach to improve real-time SWE estimates. Lacking dense ground-measurement networks, we simulated
k-NN interpolation of sensor data using selected pixels of a bi-weekly Lidar-derived snow water equivalent
product. k-NN extrapolations underestimate the Lidar-derived SWE, with a maximum bias of −10 cm at ele-
vations below 3000m and +15 cm above 3000m. This bias was reduced by using a Gaussian-process regression
model to spatially distribute residuals. Using as few as 10 scenes of Lidar-derived SWE from 2014 as training
data in the k-NN to estimate the 2016 spatial SWE, both RMSEs and MAEs were reduced from around 20–25 cm
to 10–15 cm comparing to using SWE reconstructions as training data. We found that the spatial accuracy of the
historical data is more important for learning the spatial distribution of SWE than the number of historical scenes
available. Blending continuous spatially representative ground-based sensors with a historical library of SWE
reconstructions over the same basin can provide real-time spatial SWE maps that accurately represents Lidar-
measured snow depth; and the estimates can be improved by using historical Lidar scans instead of SWE re-
constructions.

1. Introduction

In the state of California, ecosystem processes and water supplied
for agricultural and urban uses depend on the snowpack in the Sierra
Nevada as the primary source of spring and summer streamflow (Bales
et al., 2006). As the prediction of water availability and flood peaks
depend in part on snowpack conditions, accurate knowledge of the
snowpack can assist decision making for water resources management
(California Department of Water Resources, 2013).

Current decision making for water management in California during
the snowmelt season relies on ground measurements in the Sierra
Nevada, which include continuous snow-pillow and snow-depth sensor
measurements, and monthly manual snow surveys (Molotch and Bales,
2005). Ground stations are sparsely placed in the mountains compared
to the spatial scale of each watershed. Therefore, the measurements

may not be representative of physiographic features required to capture
spatial variability of snow depth and snow water equivalent (SWE),
either at the site or basin scale. Satellite-based remote sensing, such as
MODIS and Landsat, has been used to map snow coverage at regional to
global scales. However, they provide only pixel-wise fractional snow-
coverage information, with no direct information on snow depth or
SWE (Dozier et al., 2008; Molotch and Margulis, 2008; Painter et al.,
2009; Raleigh et al., 2013; Rittger et al., 2013; Rosenthal and Dozier,
1996). A modeled snow-data product that is commonly used in the
Continental United States is the Snow Data Assimilation System
(SNODAS), which integrates snow information from both satellite and
ground stations, providing daily snow depth and snow water equivalent
information at 1-km2 resolution (Barrett, 2003). Recent work validating
the SNODAS spatial product with Lidar suggested that the performance
of SNODAS in the Tuolumne River basin is less accurate than 3-D
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(x,y,elevation) bilinear interpolation of ground stations (Bair et al.,
2016).

Snow-coverage information and modeled spatial land-surface me-
teorological data can be used to back-integrate SWE from the snow
melt-out date to the date of maximum SWE at the beginning of the
snowmelt season. This technique has been applied across several
mountain ranges and is referred to as the SWE-reconstruction technique
(Bair et al., 2016; Guan et al., 2013; Margulis et al., 2016; Rittger,
2012). Although SWE reconstruction captures both temporal variability
and spatial variability, it can only be done at the end of the season when
the daily energy inputs and snow covered area are known (Cline et al.,
1998).

As a complement to satellite-based estimates of snow distribution,
numerous statistical models have been developed to interpolate point-
based snow information. Multivariate linear regression, commonly used
in previous studies, can relate physiographic variables, historical SWE
data, and snow covered area imagery with the observed SWE; and the
accuracy is reasonably better than techniques such as inverse-distance
weighting and simple kriging (Schneider and Molotch, 2016; Fassnacht
et al., 2003). However, the linear-regression-based methods do not
provide spatially smooth maps and the independent variables do not
necessarily have a linear relationship with SWE (Zheng et al., 2016).
Other than regression, one category of methods that have shown pro-
mise are nearest-neighbor-based algorithms. These algorithms are at-
tractive because they are easy to implement, nonparametric, learning
based, and can learn linear and nonlinear trends in observations (Ni and
Nguyen, 2009). Simulations and estimations at either fine temporal or
spatial resolutions using parametric models can be computationally
intensive. Nearest-neighbor approaches have therefore become an al-
ternative solution to many problems in spatio-temporal modeling, not
only for their advantage in time complexity, but also for their superior
accuracy and ability to preserve patterns from observations. The k-NN
algorithm has been used for multivariate time-series simulation for
weather forecasting (Rajagopalan and Lall, 1999), disaggregating me-
teorological time-series data to finer time scales (Prairie et al., 2007;
Kalra and Ahmad, 2011), and downscaling spatial climate-model data
(Gangopadhyay and Clark, 2005). The k-NN algorithm was found to be
superior in preserving the spatio-temporal covariability of the ob-
servation than multivariate autoregressive approaches.

To address the issues in presently available basin-scale water-bal-
ance data, a prototype real-time observation network that includes
monitoring the snow conditions is being developed for the headwater
areas of the American River basin in the Sierra Nevada (Zhang et al.,
2017). The system enables combining ground measurements of snow
depth and historical SWE reconstruction using a k-nearest neighbors (k-
NN) algorithm for real-time spatial SWE estimation (Larose, 2005).

This work documents the k-nearest neighbors spatial-SWE-estima-
tion method and evaluates the estimates against a spatial SWE product
that is derived from Lidar-measured snow depth. Three questions that
motivated the present study are:

1. Does a k-NN approach for spatial SWE interpolation in mountainous
regions provide accurate SWE estimates relative to other products?

2. How is the error of the k-NN estimation distributed with regard to
topographic variables?

3. Is it possible to further decrease the error of the k-NN estimates by
distributing the residuals spatially?

2. Methods

We applied the k-nearest neighbors (k-NN) algorithm to estimate
spatial snow water equivalent (SWE) in three basins in the Sierra
Nevada, California, USA (Fig. 1a, Table 1). The experiment for the
American River basin focused on estimating the 2014 spatial SWE using
10 clusters of snow-depth measurements for 2014 from wireless-sensor
networks, and historical SWE reconstructions based on MODIS from

2001 to 2013, aiming to evaluate the k-NN estimates temporally over
the melt season. The SWE reconstructions were used by the algorithm
for learning the SWE spatial distribution embedded in the data set. We
did similar experiments in the Merced (2014) and Tuolumne (2014,
2016) basins using Lidar-based SWE estimates to evaluate the k-NN
results spatially. For these two basins, since we have fewer sensor
networks deployed, we instead selected representative pixels as hy-
pothetical sensor-network locations based on physiographic variables
using a Gaussian-mixture model; and used these Lidar-based SWE va-
lues for the k-NN experiments. In this setup we used historical SWE
reconstructions, historical Lidar-derived SWE, and historical SNODAS
SWE as spatial training data to explore if different data sources matter.
The spatial results over the two basins were evaluated using the Lidar-
derived SWE as a ground-truth data set.

2.1. American River basin analysis using wireless-sensor network data

The 10 wireless-sensor networks (Table 2) were deployed in the
seasonally snow-covered region of the 5570 km2 American basin
(Fig. 1b). Each network has ten or eleven sensor nodes (Fig. 1c) that
measure snow depth, temperature, relative humidity, soil moisture, and
short-wave solar radiation (Zhang et al., 2017; Brun-Laguna et al.,
2016). The placements were strategically selected, aiming to capture
snow depth and meteorological variability from elevation gradients,
south versus north-facing slopes, steep versus flat areas, and various
vegetation densities. All sensors take measurements at a 15-minute
intervals, and the network manager of each sensor cluster forwards the
data to a central webserver (Zhang et al., 2017). Daily data averaged
over each cluster were used in the current analysis.

2.2. Snow water equivalent reconstruction data

Snow water equivalent reconstruction is an existing data set that
was produced by estimating historical spatial SWE for past snowmelt
seasons (Guan et al., 2013; Molotch et al., 2017). The time extent of the
SWE reconstructions is from 2000 to 2014 and the spatial extent covers
the entire Sierra Nevada. The SWE-reconstruction method uses a snow-
surface energy and mass-balance model:

= ↓ − + ↓ + ↑ + +M ρL S α LW LW SH LH(1 )p (1)

where Mp(m) is the potential snowmelt (assuming full snow coverage),
ρ(kg/m3) is the liquid-water density, L(kJ/kg) is the latent heat of fu-
sion, S ↓ (J/m2) is the subcanopy insolation, α(unitless) is snow albedo,
LW ↓ (J/m2) is the downwelling longwave radiation, LW ↑ (J/m2) is the
longwave radiation emitted from the snowpack. SH(J/m2) and LH(J/
m2) are sensible heat exchange and latent heat exchange accordingly.
We need to note that the SWE-reconstruction model did not account for
precipitation that occurs during the melt period, which may introduce
bias in the estimates. The potential snowmelt Mp is scaled by the frac-
tional snow-covered area (fSCA) derived from MODIS to estimate the
actual daily snowmelt,

= ×M M f .p SCA (2)

The time-series SWE for the season is calculated by back integrating
the daily snowmelt since snow meltout:

∑= +
=
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where SWEn is SWE at time step n, SWE0 is the initial SWE, andMj is the
actual snowmelt during time step j. The initial SWE at each model pixel
can be reconstructed at the time when snow disappearance observed
from the satellite (fSCA=0):
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