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A B S T R A C T

Soil thermal inertia (P), a property that controls the temporal variation of near-surface temperature, has been
used to estimate surface water content (θ) in remote sensing studies. The accuracy of θ estimates, however, is
affected by surface soil porosity (n). We hypothesize that n can be derived using a simple linear n-P relationship
of a dry surface soil layer, and that accounting for n improves the accuracy of θ estimation using a P(θ) model.
The P of a surface layer was measured by using the heat pulse method during a drying period, and the feasibility
of estimating θ with a P(θ) model that included n was explored. The approach was also tested with published P
values derived from meteorological data and MODIS data against in situ θ measurements at two field sites in
Arizona, USA. The results on a partially vegetated shrubland indicated that by using the P-derived n, the P(θ)
model provided more accurate θ estimates than by using the literature n values. Discrepancies between modeled
θ and in situ θ measurements were observed at small θ values, which were caused in part by the fact that the
modeled θ represented soil layers a few millimeters thick, while the in situ measurements represented θ at the 5-
cm depth. The new n-P function has potential for estimating surface θ accurately using multi-scale P data on bare
soils or on sparsely vegetated lands.

1. Introduction

Soil water content (θ, m3m−3) is a key environmental variable that
affects water and energy exchanges at the land-atmosphere interface
(Robinson et al., 2008; Ochsner et al., 2013). Recently large-scale θ
monitoring techniques have been advanced for better understanding
the dynamics and patterns of θ and θ-related land surface processes
(Ochsner et al., 2013). Among these techniques, the optical/microwave
remote sensing (RS) methods allow for spatial and temporal mapping of
surface θ for large areas (Wagner et al., 1999; Moran et al., 2004; Leng
et al., 2016; Sadeghi et al., 2017). The microwaves can penetrate into
soil (about 0–5 cm) and are only slightly disturbed by clouds or vege-
tation cover, making the microwave RS methods suitable for global θ
mapping. The passive microwave methods have a fairly coarse spatial
resolution but a broad coverage, while the radar methods (active mi-
crowave methods) are of high spatial resolution but with long repeat
pass (Moran et al., 2004; Entekhabi et al., 2014; Uebbing et al., 2017).
Compared to microwave methods, the reflective and thermal RS
methods, which use the correlations between optical reflectance/
thermal emission and θ, have the advantage of estimating θ with

relatively high spatial resolutions and regular revisit frequencies
(Verstraeten et al., 2006; Ciani et al., 2005; Haubrock et al., 2008; Tian
and Philpot, 2015; Zhang and Zhou, 2016), despite the fact that they
are influenced significantly by vegetation, darkness (at night) and at-
mospheric conditions. Several researchers have proposed that the op-
tical RS methods can be integrated with the microwave methods as a
downscaling approach for improving the spatial resolution of micro-
wave θ estimates (Piles et al., 2011; Jackson et al., 2012; Merlin et al.,
2013; Sadeghi et al., 2015, 2017).

The thermal RS methods estimate θ based on the dependence of
land surface temperature at the thermal infrared wavebands (3 to
14 μm) or the relations between soil thermal properties and θ (Carlson
et al., 1994; Moran et al., 1994). Zhang and Zhou (2016) conducted a
full literature review on optical and thermal remote sensing methods
for estimating θ. The surface temperature-based relationships that
usually include vegetation index are mostly empirical, and the θ results
are often interfered by near-surface atmospheric conditions, such as
wind speed, surface albedo, and net radiation (Carlson, 2007; Mallick
et al., 2009; Piles et al., 2011). The thermal property-based approach,
on the other hand, relates θ to soil thermal inertia (P, J m−2 s−1/2 K−1),
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an intrinsic property that represents the ability of a surface soil to resist
temperature change (Cracknell and Xue, 1996a, 1996b). According to
the definition, P is determined by the volumetric heat capacity (C,
J m−3 K−1) and thermal conductivity (λ, Wm−1 K−1) of the surface
layer,

=P Cλ . (1)

Surface P can be retrieved remotely using operational satellites on a
daily basis (Price, 1980; Cracknell and Xue, 1996a). Several studies
have proposed P-based empirical equations for estimating θ
(Verstraeten et al., 2006; Matsushima et al., 2012), but most of them
are site-specific and require vast ground data for model calibration.
Other studies have related P to θ by using the C(θ) and λ(θ) models that
use surface porosity (n, unitless) and soil texture information (Kahle
et al., 1975; Pratt and Ellyett, 1979; Cai et al., 2007; Lu et al., 2009;
Minacapilli et al., 2009, 2012). Murray and Verhoef (2007) proposed a
normalized P(θ) model with n as the main variable for estimating soil
heat flux density, but failed to consider the effects of soil texture on P.
Considering that P varied across soils and changed with θ, Lu et al.
(2009) improved the Murray and Verhoef (2007) P model by including
n and soil textural information. The Lu et al. (2009) model is physically
based, easy to use, and only requires prior knowledge of soil textural
information and n, thus it has the potential for deriving θ by applying
the thermal RS method across different soil types without calibration
requirements. However, there is a lack of evaluation of the Lu et al.
(2009) P model for field use across multiple scales and for various
surface conditions.

The P-based models for retrieving θ require soil texture and n as
inputs. Soil texture information can often be obtained conveniently
from soil survey data. In situ n measurements, however, are tedious and
are often limited to the point scale, which restricts the application of the
Lu et al. (2009) P method. Moreover, n usually exhibits strong temporal
and spatial variations due to agricultural practices and wetting and
drying cycles (Sun et al., 2009; Leng et al., 2017; Zhang et al., 2018).
Uncertainties in n can lead to large errors in θ estimates (Murray and
Verhoef, 2007; Lu et al., 2009). There exists a need to develop advanced
methods that determine n accurately and quickly, which will improve
the accuracy of θ estimations using the P models.

In this paper, we present a new method for estimating n from soil
surface P measurements by extending the Lu et al. (2009) model. The
new method for estimating surface θ is evaluated using micro-scale
heat-pulse measurements, mesoscale mesonet data and large-scale RS
imagery datasets for various soil types, locations, vegetation covers and
moisture conditions.

2. Theoretical considerations

Lu et al. (2009) established the following relationship to represent
the dependences of P on soil type, porosity and θ (hereafter referred to
as the LU model),

= + − KP P (P P ) ,dry sat dry P (2)

where Pdry (J m−2 s−1/2 K−1) and Psat (J m−2 s−1/2 K−1) are the
thermal inertia values of dry and saturated soils, respectively, and Kp

represents the Kersten function (Murray and Verhoef, 2007).
According to the LU model, Kp is calculated as,

= −
−K Sexp[ε(1 )],P r

μ (3)

where Sr (unitless) is the degree of water saturation, which equals to the
ratio of θ and n, ε and μ are soil texture-specific parameters (unitless):
2.95 and 0.16 for coarse soils with sand fraction>40%, and 0.60 and
0.71 for fine soils with sand fraction< 40% (Lu et al., 2009).

By definition, Psat (J m−2 s−1/2 K−1) is calculated as,

=P λ C ,sat sat sat (4)

where λsat (Wm−1 K−1) and Csat (J m−3 K−1) are the saturated soil

thermal conductivity and volumetric heat capacity, respectively. The
values of λsat are estimated using the following geometric mean equa-
tion (Côté and Konrad, 2005),

=
− −λ (λ λ ) λ ,q q n n

sat q o
1 1

w (5)

where λq and λw are the thermal conductivities of quartz
(7.70Wm−1 K−1) and water (0.594Wm−1 K−1), respectively. The
quartz content of total solids (q, unitless) is taken as the sand fraction
(Peters-Lidard et al., 1998; Bristow, 1998). The thermal conductivity of
other minerals (λo, W m−1 K−1) is taken as 2.0Wm−1 K−1 for soils
when q > 0.2, and 3.0Wm−1 K−1 for soils when q≤ 0.2 (Lu et al.,
2009).

According to Campbell (1985), Csat is obtained from,

= + nC ρ c ρ c ,sat b s w w (6)

where ρb is soil bulk density (g cm−3), cs is the specific heat of soil
solids, which is taken as 0.80 J g−1 K−1 (Lu et al., 2009), cw is the
specific heat of water (4.18 J g−1 K−1), and ρw is the density of water
(1.0 g cm−3).

The term Pdry can be estimated from ρbcs (C of dry soils in Eq. (1))
and λdry. In this study, we used a fixed cs value of 0.80 J g−1 K−1 be-
cause differential scanning calorimetry measurements indicated that cs
varied in a narrow range (Lu et al., 2013). Several studies have shown
that there is a linear relationship between λdry and n (Johansen, 1975;
Lu et al., 2007). In fact, Murray and Verhoef (2007) proposed a linear
equation to calculate Pdry from n,

= − +nP 1.0624 1.0108.dry (7)

Fig. 1 shows the Pdry estimates versus n (line) using Eq. (7) and
measured values (dots) with heat pulse sensors for 12 soils of various
textures (Lu et al., 2007). The n values ranged from 0.40 to 0.55, which
produced a Pdry range of 0.45- to 0.59-kJ m−2 s−1/2 K−1. Despite the
variability of soil texture, a strong linear correlation between Pdry and n
was observed, indicating that Eq. (7) provided fairly good Pdry esti-
mations. Inversely, n can be calculated from Pdry using the following
equation,

=

−

n
1.0108 P

1.0624
.dry

(8)

As an example, Fig. 2a presents the P(θ) curves of a loamy sand soil
(with 80% sand and 12% clay) at n of 0.52, 0.48, and 0.44. The P data
were obtained using heat pulse sensors on repacked soil cores with

Fig. 1. Thermal inertia (P) of dry soils measured with the heat pulse method as
a function of porosity n for 12 soils of varying textures. The solid line represents
the results from Eq. (7) (Murray and Verhoef, 2007). The measured soil thermal
property data are from Lu et al. (2007).
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