Remote Sensing of Environment 210 (2018) 473-489

9 q . . = T T
Contents lists available at ScienceDirect a
Remote Sensing of Environment
journal homepage: www.elsevier.com/locate/rse s
A spatial ensemble approach for broad-area mapping of land surface )
: Check for
properties Sk |
Sam Hooper®, Robert E. Kennedy
College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg., Oregon State University, Corvallis, OR 97331, United States
ARTICLE INFO ABSTRACT
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the region across which a model is built and applied. Although most mapping approaches apply the same
predictor-response relationships globally across the entire modeling region, learned relationships from one
local area may be invalid for another when predicting across broad extents. Here, we adapted a spatial
ensemble approach borrowed from species distribution modeling to land cover mapping, and evaluated
whether the approach could faithfully represent spatial variation in relationships between land cover and
spectral data. The spatiotemporal exploratory model (STEM) uses an ensemble of regression trees defined
within spatially overlapping support sets, producing a broad-extent map that reflects variability at the
spatial scale of each constituent support set. As test cases for reference maps, we used 30-m-resolution forest
canopy and impervious surface cover layers from the 2001 U.S. National Land Cover Database (NLCD) for
the states of Washington, Oregon, and California. When testing strategies for support set size and sampling
intensity, we found that predictor-response relationships were strongest when individual components of the
spatial ensemble were small and when sampling intensity was high. Compared to aspatial bagged decision
tree and random forest models, we found that the STEM approach successfully captured variation in our
source maps, both globally and at scales smaller than the modeling region. Leveraging the spatial structure
of a STEM, we also mapped per-pixel spatial variation in prediction confidence and the importance of dif-
ferent predictor variables. After testing appropriate spatial ensemble and sampling strategies, we extended
the predictor-response relationships gleaned from the 2001 source maps into a yearly time series based on
temporally-smoothed spectral data from the LandTrendr algorithm. The end products were yearly forest
canopy and impervious surface cover time series representing 1990-2012. Formal evaluation showed that
our temporally extended maps also closely resembled NLCD maps from 2011. The aim of this research was to
cultivate the implicit relationships between spectral data and a given map, not improve them, but as the
need for time series maps produced at both broad extents and fine resolutions increases, our results de-
monstrate that an ensemble of locally defined estimators is potentially more appropriate than conventional
ensemble models for land cover mapping across broad extents.

1. Introduction such mapping to local and regional extents, the era of free, consistently-
processed Landsat data has led to an increased ability to bring mod-

Regional and continental scale land cover maps produced from sa- erate-scale mapping to the broad spatial extents needed to understand
tellite remote sensing are a key tool in understanding impacts of global global change (Wulder et al., 2012). Previously unattainable global-
change (Gray and Song, 2013; White et al., 2014; Wang et al., 2015). extent, Landsat-resolution maps of key surface properties are rapidly
Because land cover condition and land cover change often operate at emerging (Hansen et al., 2013; Kim et al., 2014; Pekel et al., 2016).
fine spatial scales (Sohl et al., 2004), moderate resolution sensors such Moreover, many new time-series algorithms have emerged to tap the
as Landsat play a central role in mapping efforts (Cohen and Goward, temporal richness of the Landsat archive (Zhu, 2017), and computa-
2004). Although data cost and computational burden long constrained tional advances (Gorelick et al.,, 2017) allow extension of these
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algorithms to arbitrarily large areas.

These new time-series approaches address a key challenge in map-
ping land cover change. Making maps of any surface property from
remote sensing requires mathematical modeling of the linkage between
that property and the spectral space of the remotely sensed data.
Random variation in spectral space caused by inexact atmospheric
correction and by vagaries of image acquisition date could lead to
spurious signals of change (Kennedy et al., 2009). Time-series algo-
rithms rely on models that largely remove the random noise (Zhu and
Woodcock, 2014; Kennedy et al., 2010), allowing development of a
temporally stabilized spectral data space. In principle, models between
that data space and a map developed at one point in time can be applied
to any other point in time, allowing large-area maps from a single era to
be extended backward and forward in time to better understand change
(Bartz et al., 2015; Kennedy et al., 2018; Maclaurin and Leyk, 2016).

Despite these advances in the temporal domain, there remains an
important challenge in the spatial domain. Global-scale science benefits
from spatial and temporal consistency in mapped surface properties,
but the mathematical model linking a response variable and its pre-
dictors varies among different ecosystems (Sohl et al., 2004). As the
extent of a “modeling region” (the geographic area over which that
model is built and applied) increases, spatially monolithic models be-
come less appropriate and prediction accuracy can decrease (Fink et al.,
2010). To capture local-scale relationships over broad areas, institu-
tional mapping efforts have developed continent-scale mosaics of maps
produced within semi-independent, ecoregion-sized modeling regions
where local-scale relationships and expert judgment are invoked to
improve overall map quality (Gallant et al., 2004; Homer et al., 2004;
Kellndorfer et al., 2013). While such an approach can result in high
quality, single-date, large-area maps (Homer et al., 2007), the under-
lying relationships are spatially variable and potentially unknowable.
To extract change information from any given large-area map, we must
develop mapping strategies that flexibly handle spatial variability in
predictor-response relationships without the need for expert interven-
tion.

A candidate algorithm comes from the literature of species dis-
tribution modeling. Originally developed to model bird species pre-
sence from citizen science data, the spatiotemporal exploratory model
(STEM) is a framework to generate predictions at continental scales
(Fink et al., 2010). A STEM aggregates predictions from an ensemble of
locally defined, spatially overlapping estimators (i.e., base models).
Each pixel in the final prediction map is the average or mode of all
overlapping pixels from each estimator prediction, producing a broad-
extent map that reflects variability at the spatial scale of each con-
stituent estimator. Although the main goal of Fink et al. (2010) was to
predict species distributions with intra-annual spatiotemporal varia-
bility, the spatial ensemble approach is a promising strategy to map any
phenomenon where predictor-response relationships may vary over
space.

The objective of our study was to adapt and evaluate STEM for land
cover mapping to produce a broad-extent time series. To simplify
evaluation of the method, we confined our efforts to the goal of re-
plicating existing land cover maps rather than creating entirely new
maps. Using spectral data produced from time-series segmentation al-
gorithms as predictors, we first attempted to reproduce broad-extent
maps of land cover in a single year. As source maps, we chose con-
tinuous-field products from the National Land Cover Database (NLCD)
that were mosaics of ecoregion-scale mapping products (Homer et al.,
2004). Using a suite of testing tools, we evaluated STEM's ability to
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replicate the spatial and distributional patterns in the original maps.
After testing appropriate model parameters, we then extended the
predictor-response relationships gleaned from each map into a time
series, and evaluated those spatial patterns against separately produced
maps from the same database. If successful, this combination of algo-
rithm and predictor dataset could provide a cost-effective approach to
producing continental-scale time series from a single map.

2. Materials and methods
2.1. Modeling region description

We conducted this study using data from the west coast of the
conterminous United States, covering all of California, Oregon, and
Washington. Elevations across the modeling region range from sea level
to 4400 m. Both Oregon and Washington are broadly characterized by
two vegetation zones, forest and steppe (Franklin and Dyrness, 1988),
generally corresponding to maritime and continental climatic zones,
respectively. Vegetation zones are similarly divided by the southern
Cascades and Sierra mountains in California, although more xeric ve-
getation communities are common in southern California with coastal
chaparral in the west (Ashbaugh and Alwin, 1994, 110) and desert
scrublands throughout much of southeastern California (Miller and
Hyslop, 1983). Overall, the entire region exhibits a wide variety of
forest and vegetation types. Agricultural land dominates much of the
low-elevation central valleys throughout the modeling region, with a
wide variety of crop types, including cotton, wheat, vegetables, feed
crops, and tropical evergreens (Miller and Hyslop, 1983). Most urban
development throughout Oregon and Washington is relegated to major
urban centers and highway travel corridors (Ashbaugh and Alwin,
1994, 382). The same general pattern is found in California, although
development intensity and extent are generally greater across the state.
The ecological and population density diversity makes the modeling
region ideal for testing this ensemble model, designed to handle glob-
ally variable relationships between predictor and response variables.

2.2. Training and reference data

To assess the STEM algorithm, we chose as training maps con-
tinuous-field products from NLCD: forest canopy cover (FCC) and im-
pervious surface cover (ISC) for the nominal year 2001. As continuous
metrics of land cover essential for understanding drivers of and re-
sponses to important landscape change processes (Hansen et al., 2013;
Theobald et al., 2009), these two products show markedly different
spatial patterns and spectral relationships, providing bookend-type tests
of the STEM approach. Although methods used to create these source
maps are well documented elsewhere, several points relevant to our
testing are notable. Most importantly, the maps were constructed
within predefined mapping zones, generally corresponding to ecoregion
boundaries (Homer et al., 2004). Estimates of FCC and ISC percent
cover (ranging from O to 100%) were interpreted on high-resolution
orthophotos and related to Landsat composites of imagery dating from
1999 to 2002. Reported accuracy from ten-fold cross-validation for
each modeling region within our study area ranged from 79 to 91% for
FCC and 83 to 93% for ISC (Homer et al., 2004). While independent
assessments have revealed errors in NLCD FCC and ISC data (Greenfield
et al., 2009; Nowak and Greenfield, 2010), NLCD maps are considered
to be high quality products and are widely used in ecological modeling
(e.g., Fink et al., 2010; Pidgeon et al., 2007; Theobald et al., 2009;
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