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A B S T R A C T

Long-term ground LAI measurements from the global networks of sites (e.g. FLUXNET) have emerged as a promising
data source to validate remotely sensed global LAI product time-series. However, the spatial scale-mismatch issue
between site and satellite observations hampers the use of such invaluable ground measurements in validation
practice. Here, we propose an approach (Grading and Upscaling of Ground Measurements, GUGM) that integrates a
spatial representativeness grading criterion and a spatial upscaling strategy to resolve this scale-mismatch issue and
maximize the utility of time-series of site-based LAI measurements. The performance of GUGM was carefully eval-
uated by comparing this method to both benchmark LAI and other widely used conventional approaches. The un-
certainty of three global LAI products (i.e. MODIS, GLASS and GEOV1) was also assessed based on the LAI time-series
validation dataset derived from GUGM. Considering all the evaluation results together, this study suggests that the
proposed GUGM approach can significantly reduce the uncertainty from spatial scale mismatch and increase the size
of the available validation dataset. In particular, the proposed approach outperformed other widely used approaches
in these two respects. Furthermore, GUGM was successfully implemented to validate global LAI products in various
ways with advantaging frequent time-series validation dataset. The validation results of the global LAI products show
that GLASS has the lowest uncertainty, followed by GEOV1 and MODIS for the overall biome types. However, MODIS
provides more consistent uncertainties across different years than GLASS and GEOV1. We believe that GUGM enables
us to better understand the structure of LAI product uncertainties and their evolution across seasonal or annual
contexts. In turn, this method can provide fundamental information for further LAI algorithm improvements and the
broad application of LAI product time-series.

1. Introduction

Leaf Area Index (LAI), which is defined as one half of the total green
leaf area per unit ground surface area (Chen and Black, 1992), has been
widely used to characterize the structure and function of vegetation
(Garrigues et al., 2008). As the leaf is the primary interface for the
exchange of fluxes of energy, mass (e.g. water, nutrients and CO2) and
momentum between the surface and the planetary boundary layer, LAI
is identified as a key parameter in most terrestrial ecosystem models
(Bonan, 1995; Liu et al., 1997; Richardson et al., 2012; Sellers et al.,
1997). Thus, generating accurate, consistent and continuous long-term

global LAI datasets from remote sensing observations has drawn the
attention of scientific communities (Myneni et al., 2002; Zhu et al.,
2013). Several LAI products based on different combinations of sensors
(e.g. MODIS, VEGETATION, MERIS, VIIRS etc.) and algorithms (e.g.
using the look-up table generated from radiative transfer models, ma-
chine learning etc.) have been developed (Baret et al., 2007; Knyazikhin
et al., 1998; Yan et al., 2018) and widely used in a broad range of user
communities (e.g. Bi et al., 2015; Samanta et al., 2012; Zhu et al.,
2016). Assessing the uncertainties associated with these LAI products
through comparisons with independent ground-truth measurements
(i.e. direct validation) is pivotal for their proper use in land surface
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models and other applications (Fang et al., 2012; Morisette et al., 2006;
Yan et al., 2016).

Direct validation is the most common approach to evaluate products
to understand the uncertainties associated with input, pre- or post-
processing and inversion algorithms. Many regional field campaigns
(e.g. VALERI, BigFoot, SAFARI 2000, etc.) have collected and provided
invaluable ground LAI measurements covering a wide range of biome
types and spatial variabilities (Morisette et al., 2006). In the Committee
on Earth Observation Satellites (CEOS) hierarchical four-stage valida-
tion approach, current global medium-resolution LAI products
(250m–1 km) are considered to be validated at Stage 2 (“Product ac-
curacy is estimated over a significant set of locations and time periods
by comparison with reference in situ or other suitable reference data.”)
after a tremendous effort from scientific communities (Camacho et al.,
2013; Yan et al., 2016). However, most previous studies were limited to
evaluate the temporal performance of the LAI products due to limited
resources for collecting time-series of ground LAI via recursive field
campaigns (Claverie et al., 2013). This restriction is critical because
assessing the temporal performance of these products enables us to
better understand the structure of the uncertainties and their evolution
across seasonal or annual contexts (Barr et al., 2004; Weiss et al., 2007)
and consequently reach the upper validation stage (Stage 3). To im-
prove the temporal assessment capability, the global network of sites
(e.g. FLUXNET), which enables to obtain continuous time-series of
ground LAI measurements (hereafter, LAIsite-TS) using onboard instru-
ments or recursive data collection (Baldocchi et al., 2001), emerges as a
promising data source for validation (Xu et al., 2016). However, the
spatial scale mismatch restricts the utilization of LAI measurements
from these networks as the LAI is conventionally measured within an
area of tens of meters around a site. The scale issue usually introduces
undesired errors in the validation of remote sensing products because
the spatially heterogeneous land surface results in incomparability be-
tween observations from sites and satellites (Yang et al., 2006b).
Therefore, using LAIsite-TS to validate time-series of LAI products re-
mains a challenge that should be addressed for broader application of
long-term global LAI products.

Currently, two approaches are available to remedy the scale issue in
utilizing LAIsite-TS: (1) the “bottom-up” method and (2) the spatial re-
presentativeness evaluation method (Fensholt et al., 2004; Morisette
et al., 2006). The “bottom-up” method proposed by the CEOS Land
Product Validation (LPV) subgroup is designed to link the ground
measured LAI to the remotely sensed LAI through a rigorous upscaling
procedure (Tan et al., 2005). This method first employs a two-stage
sampling strategy: (a) capture the variability across the extent of a site
based on multiple elementary sampling units (ESUs), and (b) capture
the variability within pixels of the high spatial resolution image (HSI)
by repeating measurements within each ESU. Then, a transfer function
is established based on the ground LAI and the spectral measurements
from the HSI to generate an LAI reference map (hereafter, LAIHSI). Fi-
nally, the generated LAIHSI map is spatially aggregated to retrieve scale-
matched LAI (hereafter, LAIHSI-AGG) for direct comparison (Morisette
et al., 2006). The “bottom-up” approach is effective for both homo-
geneous and heterogeneous landscapes because it employs a sufficient
number (20−100) of ESUs to represent regions with different spatial
heterogeneities and obtain a robust transfer function between LAI and
spectral characteristics. However, this method is unsuitable for most of
sites where LAI measurements were repeated throughout years (e.g.
FLUXNET sites) because of poor spatial sampling. Note that the
“bottom-up” approach may also be unsuccessful if the HSI is unavail-
able because of unexpected conditions (e.g. the cloud effect and the
temporal mismatch due to the satellite local passing time). The second
approach is based on the evaluation of the spatial representativeness of
LAIsite-TS (Xu et al., 2016). This method determines whether the LAI
measurements are spatially representative for the product pixel by
quantitatively considering the point-to-pixel comparability and within-
pixel heterogeneity. Quantifying the reliability of ground observations

is advantageous because this approach can reduce potential errors from
point-to-pixel inconsistency. In particular, time-series validation prac-
tice can greatly benefit from this approach because it can consider
changing spatial heterogeneity within the product pixel grid over time
due to variation in vegetation growth at different growth stages (Ding
et al., 2014). However, the stand-alone implementation of this ap-
proach yields only a few valid (i.e. high representativeness) LAIsite-TS
dataset from networks that can accurately represent the product pixels.
Consequently, this limit in implementing the stand-alone second ap-
proach hinders the ability to assess the temporal performance of the
product. Therefore, an additional processing (i.e. upscaling) is required
to use less representative measurements to derive the time-series vali-
dation dataset.

Here, we propose an integrated approach, namely, the Grading and
Upscaling of Ground Measurements (GUGM), which reconciles the pros
and cons of the above two approaches. The GUGM is expected to be
more suitable for LAIsite-TS than the current methods, i.e. the “bottom-
up” method and the spatial representativeness evaluation method, in
two respects: (1) reducing the uncertainty of the upscaled LAI dataset,
and (2) increasing the size of the available LAI dataset. This paper aims
to (a) provide a full description of the GUGM, (b) evaluate the perfor-
mance of the GUGM compared to that of conventional approaches, and
(c) implement the proposed approach on three global LAI products:
MODIS, GLASS and GEOV1. The paper is organized as follows. Section 2
describes the framework of the GUGM method. Section 3 introduces the
data and detailed methods in this study. Section 4 provides the results
and discussion for the evaluation of GUGM and the application of
GUGM for the three global LAI products. Finally, Section 5 provides
concluding remarks on this study.

2. Framework of the GUGM method

The proposed GUGM method mainly includes two sequential pro-
cesses, i.e. spatial representativeness grading and spatial upscaling.
GUGM first ingests LAIsite-TS, the reflectance of the HSI and a land cover
map as inputs, and then generates a LAI validation dataset (hereafter,
LAIsite-HSI), which is directly comparable to LAI products with mini-
mizing potential scale effects. Note that LAIsite-HSI is generated by using
the combination of LAIsite-TS and LAIHSI-AGG at a given spatial resolution.
The framework of GUGM is shown in Fig. 1 and a detailed description
of each step is provided below.

2.1. Spatial representativeness grading

The method presented by Xu et al. (2016) uses three indicators to
evaluate the spatial representativeness of LAIsite-TS: Dominant Vegeta-
tion Type Percent (DVTP), Relative Absolute Error (RAE) and Coeffi-
cient of Sill (CS). These indicators are calculated based on the HSI. The
DVTP is defined as the percent of the area covered by the vegetation
type which was observed at the LAI field site. It indicates whether the
site-observed vegetation type is the same as the dominant vegetation
type in the product pixel grid. The RAE quantifies the point-to-pixel
consistency by calculating the absolute difference between the LAIsite-TS
and LAIHSI-AGG, and then dividing by LAIHSI-AGG in the product pixel
grid. The CS, defined as the ratio of the square root of the sill value from
a fitted variogram function to LAIHSI-AGG, describes the spatial hetero-
geneity caused by different vegetation densities within a pixel grid. To
adequately compute a variogram, we secured sufficient pair samples
(e.g. 4160 and 860 for minimum and maximum lag distance within 1-
km area, respectively). To grade the spatial representativeness of the
measurements, the proper selection of the thresholds for DVTP, RAE,
and CS is critical. For the sake of brevity, a detailed description of the
threshold selection for the three indicators is not provided here (see
Section 2 of Xu et al. (2016) for the details). Based on the established
rules, the spatial representativeness of LAIsite-TS in the product pixel
grid is divided into five levels (Levels 0–4), as shown in Table 1. Level 0
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