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A B S T R A C T

Hyperspectral remote sensing is increasingly being recognized as a powerful tool to map ecosystem properties
and functions through time and space. However, general information on the accuracy of this technology to assess
the vegetation's biophysical and -chemical trait composition, and on the variables which are mediating this
accuracy, is often lacking so far. Here, we addressed this knowledge gap for grass- and shrubland ecosystems and
applied novel three-level meta-analytical regression equations to 77 studies that validated hyperspectral remote
sensing data with field observations. Our results showed that the accuracy of hyperspectral sensors is generally
high, but strongly depends on the trait being studied (leaf area index: R2= 0.79 and nRMSE=0.19, chlorophyll:
R2= 0.77 and nRMSE=0.21, carotenoids: R2= 0.80 and nRMSE=0.29, phosphorus: R2=0.75 and
nRMSE=0.14, nitrogen: R2= 0.74 and nRMSE=0.09, water: R2=0.69 and nRMSE=0.13, and lignin con-
tent: R2= 0.64 and nRMSE=0.26). Moreover, they indicated that the use of multivariate signal processing
techniques could improve these estimation accuracies (adjusted p < 0.06 for LAI, chlorophyll and nitrogen).
Finally, estimations from air- and spaceborne imaging spectrometers, allowing for functional mapping at broader
spatial scales, were found to be as accurate as estimations from ground-based spectral measurements. Despite
these promising findings, we revealed that leaf morphological properties (e.g. specific leaf area and leaf dry
matter content) and biochemical traits which are not growth-related (e.g. lignin and cellulose) remain under-
explored in grass- and shrublands. Moreover there was a strong publication bias towards R2 for assessing model
performance. Our findings foster and direct further methodological and technological developments for a more
accurate and complete functional characterization of these ecosystems worldwide.

1. Introduction

The evaluation of management and climate impacts on the Earth's
life support system requires an understanding of ecosystem dynamics.
The concept of plant functional traits can highly contribute to such
understanding (Díaz et al., 2004; Orwin et al., 2010; Shipley et al.,
2006). It enables the assessment of plant communities response to en-
vironmental change and anthropogenic pressures on the one side (de
Bello et al., 2006; Garnier et al., 2007), and the prediction of alterations
in the functioning of ecosystems due to changing plant communities on
the other side (Kurokawa et al., 2010; Lavorel and Garnier, 2002).
Today, a wide range of morphological, physiological and phenological
plant characteristics have already been successfully linked to ecosystem
properties and processes such as biomass production, soil fertility and
biogeochemical cycles (de Bello et al., 2010; Díaz et al., 2007; Lavorel

and Garnier, 2002). Easily available and large scale information on the
functional composition and diversity of plant communities is hence
crucial for tracking the status of Earth's ecosystems (Chapin et al., 2000;
Lamarque et al., 2014).

Although the traits of plant species can be manually measured
(Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013) and are
widely available in various local (Kleyer et al., 2008; Paula et al., 2009)
and global (Kattge et al., 2011) databases, these actually cover only
about 2% of currently known vascular plant species (Jetz et al., 2016).
Part of the explanation for this lack of data is that measuring functional
traits in the field or laboratory is laborious and may even be unfeasible,
especially in very diverse ecosystems or at very large geographical
scales (Homolová et al., 2013). Even though techniques exist to fill
taxonomical and functional data gaps (e.g. Schrodt et al., 2015; Shan
et al., 2012; Taugourdeau et al., 2014) and to upscale available trait
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data to larger geographical scales (e.g. Swenson et al., 2012; van
Bodegom et al., 2014), these approaches remain hampered by sample
inhomogeneities and do not account for temporal variations. Remote
sensing, allowing spatially continuous and frequent observations across
ecosystems, is an established technique to map structural and bio-
chemical plant properties (Curran, 1989; Homolová et al., 2013;
Ollinger, 2011; Ustin et al., 2009). More recently this potential has been
acknowledged in biodiversity science, for example in the mapping of
plant species diversity (Asner and Martin, 2016; Lausch et al., 2016;
Zhao et al., 2016), plant strategies (Fassnacht et al., 2017; Feilhauer
et al., 2016; Schweiger et al., 2017) and invasive plants (Niphadkar and
Nagendra, 2016).

Although studies quantifying plant traits using hyperspectral sen-
sors or imaging spectroscopy are numerous, they are to some extent
biased towards forest and agro-ecosystems (Asner et al., 2015; Dorigo
et al., 2007; Knyazikhin et al., 2013). Despite the extent and ecological
value of grass- and shrubland ecosystems, their functional character-
ization using hyperspectral remote sensing is still somewhat under-
explored. Covering up to 40% of the global land area (Latham et al.,
2014; Suttie et al., 2005; White et al., 2000) they include among the
most species-rich plant communities (Faber-Langendoen and Josse,
2010; Pinches et al., 2013; WallisDeVries et al., 2002), providing es-
sential habitats for other species (Silva et al., 2008; Van Swaay, 2002).
These ecosystems play an important role in the functioning of Earth's
life system by regulating water quality (Rowe et al., 2006; Stevens
et al., 2008), protecting soil from water and wind erosion (De Baets
et al., 2006; Li et al., 2007) and sequestering carbon (Derner and
Schuman, 2007; Minami et al., 1993).

Despite the exhaustively described potential of remote sensing for
mapping and monitoring the status of vegetation in grasslands (Ali
et al., 2016), rangelands (Svoray et al., 2013) and wetlands (Adam
et al., 2010), we lack a general quantitative assessment of the reliability
of remote sensing to quantify a range of ecosystem properties and
functions, and of the variables affecting this reliability. This informa-
tion is crucial for the further adoption of remote sensing techniques in
biodiversity science, given the increasing availability and affordability
of data generated by hyperspectral sensors. Here we filled this knowl-
edge gap through a comprehensive meta-analysis of trait estimation
accuracies obtained with different hyperspectral sensors in grass- and
shrublands worldwide. Data-driven meta-analyses combine results
across studies, generally assigning more weight to more precise studies,
and by doing so improve statistical power compared to individual
studies (Borenstein et al., 2009; Curtis and Queenborough, 2012; Lipsey
and Wilson, 2001).

Next to quantifying overall trait estimation accuracies, the meta-
analytical approach is highly useful to reveal technical and methodo-
logical trends in the collection of relevant articles. First, as a result of
the progress in sensor technology, a wide variety of handheld and air-
borne hyperspectral sensors are nowadays operational (Qi et al., 2011).
Meanwhile, the increasing interest in large-scale ecosystem functioning
and biodiversity (Pereira et al., 2013; Proença et al., 2016; Skidmore
et al., 2015) is driving the development of hyperspectral space missions
such as EnMAP (Segl et al., 2010; Stuffler et al., 2007), HyspIRI
(Pellissier et al., 2015; Turpie et al., 2015) and PRISMA (Labate et al.,
2009). The utility of these sensors for global diversity and global
change studies will depend on whether satisfying accuracies can be
obtained when capturing information at coarser resolution. Second, a
large variety of signal processing techniques is available, with different
technical strengths and weaknesses (Atzberger et al., 2015; Verrelst
et al., 2015). Recently, emphasis has shifted from the use of vegetation
indices towards multivariate modelling, where a larger part of the
spectrum is used for trait quantification (Verrelst et al., 2015). Because
statistical approaches often lack generalization potential and transfer-
ability to different images or conditions (Dorigo et al., 2007; Foody
et al., 2003), radiative transfer models have been developed which,
based on physical principles, disentangle the contribution of structural

and biochemical characteristics, but also illumination geometry and soil
background characteristics to the spectral signature. In herbaceous
ecosystems, mainly the PROSAIL canopy reflectance model
(Jacquemoud et al., 2009), combining the PROSPECT leaf optical
properties model (Jacquemoud and Baret, 1990) and the SAIL canopy
bidirectional reflectance model (Verhoef, 1984), has been exhaustively
applied and validated (e.g. Darvishzadeh et al., 2008b). The extent to
which the computational complexity of enhanced methods is worth the
effort in terms of trait estimation accuracy will influence researchers in
making methodological choices.

In this study we sought to quantitatively synthesise previous re-
search on the functional characterization of grass- and shrubland eco-
systems using hyperspectral remote sensing. Our specific aims were to:

(i) Determine geographical distribution patterns of published studies
and to identify research trends in the use of different sensor scales
and signal processing techniques over time;

(ii) Determine the overall estimation accuracy and precision of several
key grass- and shrubland traits;

(iii) Evaluate the potential of airborne and satellite missions for de-
tecting functional traits in comparison with ground-based hyper-
spectral measurements; and to

(iv) Explore the capacities of different signal processing techniques for
estimating functional traits.

2. Materials and methods

2.1. Literature search and criteria for inclusion

In order to assemble a representative sample of studies quantifying
functional traits with hyperspectral data in grass- and shrubland eco-
systems, two procedures were followed. First, we conducted an ex-
tensive database search of Thomas Reuters Web of Science using
combinations of keywords looking for 1) hyperspectral studies in 2)
grass- and shrubland ecosystems, investigating 3) plant functional traits
(Table S1). We focused on a wide variety of quantitative biochemical
and structural traits which are easy to measure in the field/laboratory
(Garnier et al., 2016), have a clear expression in the vegetation's
spectral signature (Ollinger, 2011), and support multiple inter-
dependent functional processes. These included light capture and
growth biochemicals such as pigments, nitrogen and phosphorus, es-
sential supporting compounds such as water and lignin, and morpho-
logical leaf and plant properties such as LAI, SLA and canopy height
(Table S1). Although from a forage quality perspective for livestock
industry several other characteristics such as crude protein and ash
content, metabolizable energy, acid and neutral detergent fibre are
interesting (Beeri et al., 2007; Pullanagari et al., 2012), we did not
include these traits in our meta-analysis. The keywords were combined
with Boolean AND's (between the three search strings) and Boolean
OR's (within each search string). No restrictions were set on document
type and time span. Our most recent search (April 10th, 2017) identi-
fied 483 publications. In addition to the systematic database search, we
examined the reference sections of relevant literature reviews for ad-
ditional publications.

From the retrieved list of studies, only these were retained that (i)
focused on non-agricultural grass- and shrublands, (ii) reported R2 and/
or nRMSE (i.e. RMSE expressed as a percentage of the mean trait value)
as measure of trait estimation precision and accuracy, and (iii) reported
the number of samples used for model development and/or testing. The
coefficient of determination and normalized root mean square error
were selected over other goodness-of-fit statistics because they were
most frequently reported in the identified studies, or derivable from the
text and figures. Moreover, the non-dimensionality of both indicators
allows for comparability and therefore enabled us to combine studies
expressing traits in different units and scales. Lastly, because they in-
dicate different aspects of a model's performance, the sole consideration
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