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A B S T R A C T

Thermal infrared sensing from space is a well-developed field, but mixed pixels pose a problem for many ap-
plications. We present a field study in Dana Meadows, Yosemite National Park, California to scale from point
(~2-m resolution) to aerial (~5-m resolution gridded, 1 km×6 km extent) to satellite (MODIS, ~1000-m re-
solution, global extent) observations. We demonstrate how multiple thermal bands on MODIS can be used to
separate snow and forest temperatures and determine the fractional snow-covered area (fSCA) over a
3 km×3 km array of 9 MODIS grid cells. During the day, visible, near-infrared, and shortwave-infrared bands
provide a first guess of fSCA and help to constrain the solution. This technique, which has estimated errors< 2 °C
and 10% fSCA for many expected conditions, enables better understanding of the snowpack energy balance,
atmospheric inversions and cold air pools, and forest health.

1. Introduction

Remote sensing of surface temperatures using infrared wavelengths
has seen extensive development and applications over land (Kalma
et al., 2008; Li et al., 2013) and oceans (Kilpatrick et al., 2015), pro-
viding insight on global fluxes of energy and moisture. Satellite thermal
infrared radiation (TIR) images—available from such sensors as Landsat
TM, ETM+, and TIRS, ASTER, NOAA AVHRR, GOES, MODIS, and
VIIRS—provide comprehensive spatial and temporal data (see
Tomlinson et al., 2011 for history and IR specifications). Applications
cover a wide range of topics, including surface heat flux (Norman et al.,
1995), evapotranspiration (Wang and Dickinson, 2012), stream tem-
peratures (Handcock et al., 2006, 2012), a surrogate for air temperature
(Shamir and Georgakakos, 2014; Pepin et al., 2016), urban heat island
studies (Rizwan et al., 2008), and snow surface temperature (Fily et al.,
1999; Westermann et al., 2012; Pérez Díaz et al., 2015).

MODIS land surface temperature (LST) and emissivity products
have proven reliable over homogeneous terrain (Wang and Liang,
2009) but have greater biases and uncertainty in mountain areas
(Lipton and Ward, 1997; Liu et al., 2006). A common issue in hetero-
geneous terrain is the mixture of different components at very different
temperatures within a single pixel. Prior work has successfully

separated fire temperatures (and their sizes) from the rest of the pixel
(Dozier, 1981) and vegetation and soil temperatures in arid regions
(Norman et al., 1995). Although the mixed-pixel temperature problem
has not been previously addressed in snow-covered areas, at all but the
finest spatial resolutions, most pixels are mixed. Approximately 40% of
the North American snow zone is forest-covered (Klein et al., 1998),
with most of this area covered with forest densities ranging between
20% and 90%, resulting in large areas where satellite grid cells contain
a mix of both forest and snow (or in the summer, soil or underbrush).

Current LST products provide one temperature for a blend of all
components in a grid cell, but practically and scientifically, tempera-
tures of the individual end-members are much more valuable. Forest
surface temperature (Tforest) may be used as a proxy for air temperature
and/or as an indication of forest health and transpiration (Wang and
Dickinson, 2012). Snow surface temperature (TSS) depends on energy-
balance forcing and provides a spatially explicit measure of how energy
is distributed over terrain. In the snow sciences, comparing modeled
and measured TSS has proven a key tool to evaluate model ensembles
(Rutter et al., 2009; Essery et al., 2013; Raleigh et al., 2013; Pomeroy
et al., 2016) and has enabled identification of fundamental errors in
modeling the energy balance, including downwelling longwave radia-
tion (Lundquist et al., 2015) and model turbulence schemes (Lapo et al.,
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2015).
Impediments to using satellite-measured snow surface temperatures

that Dozier and Painter (2004) identify include: (1) lack of validation
work to quantify errors at various scales; (2) the mixed-pixel problem,
where a single pixel seen by the satellite contains more than just snow;
(3) thermal path radiance from the atmosphere in between the sensor
and the snow surface; and (4) imprecisely quantified emissivity of the
snow surface. Of these, the mixed-pixel problem (Pérez Díaz et al.,
2015) and clouds in between the sensor and the surface (Fily et al.,
1999; Westermann et al., 2012) have been mentioned most frequently.
Although snow emissivity varies with grain structure and viewing
angle, it is generally thermally dark, with an average longwave emis-
sivity of 0.985–0.990 for all grain sizes (Dozier and Warren, 1982),
which makes problems with incorrect emissivity a second-order effect
(Raleigh et al., 2013), with variations< 0.5 °C.

Here, we address the first and second issues listed above, exploring
error sources in Tforest and TSS signals at various scales and presenting a
solution to the mixed-pixel problem.

To address the issue of validation, we present data from a February
2016 field campaign to quantify differences in brightness temperatures
measured at a plot (radiometer with ~2-m footprint), from an aircraft
(IR camera plus radiometer with ~5-m gridded pixel resolution), and
from satellite (MODIS, ~1000-m footprint), over Dana Meadows in the
Tuolumne River Watershed, Sierra Nevada, California. With these data,
we focus specifically on a high elevation (2897m) subalpine region
during clear weather, with a dry atmosphere with limited atmospheric
influence. We focus on fairly flat terrain locally, with grid cells com-
prised of snow and forest (lodgepole and whitebark pine).

Section 2 outlines our approach to solving the mixed pixel problem;
Section 3 describes the field campaign, location, and measurements.
Section 4 details results; Section 5 discusses caveats and implications.
We conclude in Section 6.

2. Approach to solving the mixed pixel problem in forest and snow

2.1. General theory and background

Satellite thermal infrared (IR) imagery is generally coarser resolu-
tion than the features we hope to observe, particularly in mountainous
and/or forested terrain. However, most satellite sensors that observe in
the thermal infrared wavelengths use two or more bands, usually to
enable atmospheric correction of the signal (Wan and Dozier, 1996).
When the sensor's bands include both the midwave IR (~4 μm) and the
longwave IR (~11 μm), multispectral un-mixing is possible (Dozier,
1981; Zhan et al., 2013). The basis of this approach lies in the Planck
equation and Wien's displacement law, wherein warmer objects emit
more thermal radiation at all wavelengths, with peaks at shorter wa-
velengths, than cooler objects. Therefore, a grid-cell area that emits at a
mix of warmer and cooler brightness temperatures, compared to a
uniform grid cell of the mean temperature, will appear warmer at all
wavelengths, with a greater increase in the midwave IR than the
longwave IR (Fig. 1). For example, given a 1 km×1 km grid cell
comprised of forest and snow, with a bimodal temperature distribution
peaking near−10 °C and−3 °C, the brightness temperature of the pixel
as a whole would be about 0.3 °C warmer in the midwave IR than the
longwave IR (Fig. 1). Note that for simplicity, this example (Fig. 1)
considers an image taken before sunrise (no reflected radiation) and
only brightness temperatures (which assumes the emissivity of all ele-
ments is 1).

The radiance sensed is the integration across the full range of
temperatures in the pixel, which, neglecting reflected radiation for the
moment, can be written in discretized form as
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where Lj is the radiance at wavelength λj, fk is the fraction of the pixel
area at temperature Tk, εjk is the emissivity of the kth fraction of the
pixel at wavelength j, and β represents the Planck equation
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where c is the speed of light, k is the Boltzmann constant, and h is the
Planck constant. Conceptually, the radiance sensed at each pixel by
each sensor band can be modeled as a mixture of that emitted from two
endmembers, snow and forest, each weighted by the fraction of area of
the pixel they cover, plus any reflected radiance in that wavelength:
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where fSCA is the fractional snow-covered area of the pixel, εsnowis the
emissivity of snow at wavelength λj and viewing angle θ, TSS is the
mean temperature of the snow, εforestis the emissivity of the forest as a
function of wavelength, Tforest is the mean temperature of the forest
cover, and R↓ is the wavelength specific radiance reaching the surface.
We presume sky radiance is negligible; therefore we neglect R↓ at night
and solve for it as a function of incoming solar radiation during the day
(described further in Section 2.5). Note that we consider fSCA to be the
viewable fraction of snow cover; this does not include snow underneath
forest cover.

Using nonlinear optimization methods (Coleman and Li, 1996), we
can simultaneously solve for the two temperatures. If fSCA is measured
independently, for example by spectral un-mixing in the visible through
shortwave-infrared wavelengths (Painter et al., 2009), and emissivity is
calculated using theoretical methods (Dozier and Warren, 1982) or
laboratory measurements (Salisbury et al., 1994), then the two tem-
peratures are the only unknowns, so only two brightness temperature
measurements—one in the midwave IR and one in the longwave
IR—are needed. Extra temperatures (more than one band in the 4 μm
and/or 11 μm regions) enable a least-squares solution rather than an
exact one. If independent estimates of fSCA are not available, for ex-
ample at night, then assuming that Tss and Tforest are the same in ad-
jacent pixels whose fSCA values are different also leads to the solution by
determining values that would produce the set of radiances that best
match those measured in each of the sensor's observational bands. Note
that each radiance can be converted to a brightness temperature by
algebraically inverting the Planck Equation (Eq. (2)), and so we mini-
mize the difference between observed and calculated brightness tem-
peratures across all observed wavelengths (Fig. 1c). Details related to
this methodology are outlined below and tested in Section 4.

2.2. Application of general theory to MODIS

For MODIS, five bands are sensitive to land surface temperatures
and are minimally impacted by the atmosphere (Berk et al., 2014) or by
noise issues that plague photovoltaic sensors (Sun et al., 2015; Xiong
et al., 2015; Sun et al., 2016). These useful bands (marked in Fig. 1)
include 20 (3.66–3.84 μm), 22 (3.929–3.989 μm), 23 (4.02–4.08 μm),
31 (10.78–11.28 μm), and 32 (11.77–12.17 μm) and are used together
for various remote sensing applications, including the split-window
atmospheric correction and operational sea-surface temperature re-
trieval (Wan and Dozier, 1996; Kilpatrick et al., 2015). With regards to
Eq. (3), radiances in 5 bands generate 5 equations and 3 unknowns,
which should be easily solved. While they are among the best per-
forming bands on the satellite, bands 31 and 32 have an uncertainty of
about 0.1% (Xiong et al., 2015), which, for a blackbody at 0 °C, leads to
uncertainty of up to±0.05 °C in the retrieved brightness temperature.
For typical snow and forest surface temperatures (e.g., −10 °C and 0 °C)
with a near-even mix of covered area, the difference in sensed bright-
ness temperatures between the three midwave bands (20, 22, 23) and
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