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A B S T R A C T

Several thousands of moraine-dammed and supraglacial lakes spread over the Hindu Kush Himalayan (HKH)
region, and some have grown rapidly in past decades due to glacier retreat. The sudden emptying of these lakes
releases large volumes of water and sediment in destructive glacial lake outburst floods (GLOFs), one of the most
publicised natural hazards to the rapidly growing Himalayan population. Despite the growing number and size
of glacial lakes, the frequency of documented GLOFs is remarkably constant. We explore this possible reporting
bias and offer a new processing chain for establishing a more complete Himalayan GLOF inventory. We make use
of the full seasonal archive of Landsat images between 1988 and 2016, and track automatically where GLOFs left
shrinking water bodies, and tails of sediment at high elevations. We trained a Random Forest classifier to
generate fuzzy land cover maps for 2491 images, achieving overall accuracies of 91%. We developed a like-
lihood-based change point technique to estimate the timing of GLOFs at the pixel scale. Our method objectively
detected ten out of eleven documented GLOFs, and another ten lakes that gave rise to previously unreported
GLOFs. We thus nearly doubled the existing GLOF record for a study area covering ~10% of the HKH region.
Remaining challenges for automatically detecting GLOFs include image insufficiently accurate co-registration,
misclassifications in the land cover maps and image noise from clouds, shadows or ice. Yet our processing chain
is robust and has the potential for being applied on the greater HKH and mountain ranges elsewhere, opening the
door for objectively expanding the knowledge base on GLOF activity over the past three decades.

1. Introduction

Melting glaciers in the Hindu Kush Himalayan (HKH) mountain
ranges feed several thousand moraine-dammed and supraglacial lakes
(Ives et al., 2010; Nie et al., 2017). Embedded in loose debris and
surrounded by sources of falling debris and ice, many of these water
bodies are prone to glacial lake outburst floods (GLOFs) (Clague and
Evans, 2000). GLOFs can release and transport millions of cubic meters
of water and sediment within few hours (Bajracharya et al., 2007;
Cenderelli and Wohl, 2001; Wang et al., 2012). Quaternary outburst
floods in the HKH have been shaping major valley trains for thousands
of years (Korup and Tweed, 2007; O'Connor et al., 2013; Scherler et al.,
2014). GLOFs have also killed several hundreds of people in the past
decades and caused substantial damage to infrastructure, hydropower
stations, livestock and farmland (Kattelmann, 2003; Richardson and
Reynolds, 2000; Yamada and Sharma, 1993). Data on loss and damage
are crude, though Nepal and Bhutan may have suffered the highest
socio-economic impacts by historic GLOFs worldwide (Carrivick and
Tweed, 2016). In any case, GLOFs clearly rank among the most pub-
licised glacial hazards in the Himalayas (Richardson and Reynolds,

2000).
Difficult access and high alpine conditions make detailed field-based

monitoring of lakes prone to outburst impractical; several studies thus
resorted on measuring lake bathymetry, dam material, and the sur-
rounding topography (Fujita et al., 2013; Wang et al., 2012; Worni
et al., 2013). Moreover, data on historic GLOFs in the HKH are scarce
and vague about outburst parameters. Local GLOF inventories often
contradict each other, at least judging from data that we collected on 36
GLOFs from moraine-dammed lakes in the Himalayas since the 1950s
(Ives et al., 2010; Komori et al., 2012; Liu et al., 2014; Wang et al.,
2012; Table 1).

Current research aims at linking global climate warming to glacier
melt, and the formation and changes of meltwater lakes, including the
probability of catastrophic lake outburst (Harrison et al., 2017). Ne-
gative glacier mass balances (Brun et al., 2017) and increases in glacial
lake number and area (Nie et al., 2017; Song et al., 2017; Zhang et al.,
2015) have characterized many parts of the HKH over the past decades,
and thawing permafrost in glacier dams and surrounding rock walls
may further destabilise the glacial lake system (Haeberli et al., 2017).
While all these observations are in line with a hypothesized increase in
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GLOF frequency, this remains difficult to test given commonly observed
rates of up to one event per year, and only a few dozen reliably docu-
mented events (Carrivick and Tweed, 2016; Harrison et al., 2017). This
mismatch could reflect a censoring bias such that only extreme events
and their impacts have been reported.

Clearly, a database of past events as complete as possible is essential
for robust and reliable GLOF hazard assessment (Emmer et al., 2016).
Time series from satellite imagery find widespread use for compiling
multi-temporal glacial lake inventories, especially for rapidly ex-
panding lakes that are thought to have an elevated outburst potential
(Nie et al., 2017; Wang et al., 2015a, 2011). To our knowledge, no
study has systematically explored the Landsat archive for retrospective
GLOF detection in the HKH, although it offers a largely continuous,
nearly 30-year time series with regional coverage every 16 days. For
tracing past GLOFs, we build on the experience that lakes most often
disappeared or shrank abruptly and exposed debris fans and sediment
tails in river channels downstream. Only Komori et al. (2012) used
these two indicators to visually scan satellite archives for unreported
GLOFs in the Bhutan Himalayas. Since glacial lakes often re-fill or re-
expand within few years after an outburst, previously used mapping
intervals of five to ten years might be too coarse to detect GLOFs from
lake inventories (Zhang et al., 2015). Dense cloud cover during the
monsoon, lake freezing in winter, and mountain shadows are the main
challenges for pursuing the glacial lake area over time. Multiple noise-
free images per year may be desirable to detect reliably sudden lake
changes, but remain rare in the Himalayan weather conditions. Expert-
based manual mapping from multi-temporal medium to high resolution
(< 30 m) imagery has so far offered high-quality lake inventories, but
is resource-intensive and thus restricted to few selected glacial lakes
(Shrestha et al., 2013; Wang et al., 2015a; Yao et al., 2012) or single
catchments (Bolch et al., 2008; Che et al., 2014; Jain et al., 2012). Semi-
automatic mapping using chains of decision rules along band and to-
pographic indices allows for monitoring of glacial lakes over larger
areas, but requires time-consuming post-processing (Gardelle et al.,
2011; Li and Sheng, 2012; Song et al., 2016). Machine learning clas-
sifiers such as Random Forests (RF) have rapidly advanced the mapping
of changing land cover and water bodies (Mueller et al., 2016; Rover
et al., 2012; Tulbure et al., 2016), thereby accompanying a high po-
tential for GLOF detection. Random Forests (Breiman, 2001) are en-
semble classifiers that use bagging to grow and aggregate multiple in-
dependent decision trees from a bootstrap sample of predictor
variables. The classifier can deal with non-monotonic and non-linear
relationships between the predictors and response variables, and is
robust against overfitting (Rodriguez-Galiano et al., 2012). Hence, RF
are a powerful alternative to single, parametric classifiers (Waske and
Braun, 2009), especially for spectrally variable target classes such as
glacial lakes of differing depth and turbidity. Random Forests offer
fuzzy or probabilistic class memberships, which offer richer

information about the likelihood of change in land-cover time series
(Foody and Boyd, 1999; Metternicht, 1999).

Change detection of water bodies with Landsat time series focused
either on long-term trends of lake growth or shrinkage (Fraser et al.,
2014; Nitze and Grosse, 2016) or on the estimation of flooding fre-
quencies (Mueller et al., 2016; Tulbure et al., 2016). Automatically
extracting distinct events of rapid lake decrease, as is the case for
GLOFs, has rarely been of interest (Olthof et al., 2015). Change-point
detection in Landsat time series is well-established for forest dis-
turbance mapping, where pixels of vegetation indices are scanned for
level shifts (Hermosilla et al., 2015; Kennedy et al., 2010) or structural
breaks in fitted harmonic models (DeVries et al., 2015; Verbesselt et al.,
2012). However, alternative techniques are required, as these ap-
proaches are difficult to apply to Himalayan glacial lakes where indices
such as the Normalized Difference Water Index (NDWI; McFeeters,
1996) share similar spectral characteristics with clouds or shadows (Li
and Sheng, 2012).

Our aim is to develop, validate and apply a technique to auto-
matically detect past Himalayan GLOFs. We present a processing chain
that traces losses in lake areas from nearly three decades of seasonal
Landsat imagery building on (1) a Random-Forest based land cover
classification and (2) a novel, likelihood based change-point algorithm
to approximate the time stamp of GLOFs. We apply this processing
chain to a spatial subset of the HKH, validate our method with docu-
mented GLOFs and present newly detected GLOFs. Our search includes
sediment tails downstream of drained lakes, allowing us to trace the
location, timing, and size of GLOFs, and thus contributing to a more
complete GLOF inventory of the Himalayas.

2. Study area

Of all 36 documented GLOFs over the past seven decades, we could
visually identify eleven GLOFs in Landsat images (Fig. 1). We obtained
information on the date, location, and type of drainage for each GLOF,
using the drained lake area as a key metric for comparing pre- and post-
GLOF images (Table 1).

These GLOFs occurred in four different regions (Fig. 1) between the
central-western Himalayas of northern India (a), the central Himalayas
of Nepal and Bhutan (b and c), and the eastern Nyainqentanglha
Mountains of China (d). The number of present-day moraine-dammed
and supraglacial lakes in these areas is challenging to establish. Esti-
mates for the whole HKH range from 2276 (Fujita et al., 2013)
to> 8000 (Ives et al., 2010), depending on definition, mapping scale,
and size of study area. In the central Himalayas, glacial lakes grew by
23% in size between 1990 and 2015. Lakes grow less rapidly in area in
the western (5.0–5.4%) and eastern Himalayas (7.7–11.1%) (Nie et al.,
2017), and mostly tied to glacier melt (Gardelle et al., 2013; Kääb et al.,
2012; Song et al., 2017; Wang et al., 2015b).

Table 1
Documented GLOFs between 1988 and 2016. ID corresponds to labels in Fig. 1. We visually assessed whether drainage was complete (C) or partial (P).

ID Lake Country E [°] N [°] Elevation
[m a.s.l.]

Loss in lake area
[m2]

Date Type of
drainage

Source

1 Chorabari India 79.06 30.75 3881 11,700 2013-06-17 C Allen et al. (2016); Das et al. (2015)
2 Zanaco TAR/China 85.37 28.66 4737 66,600 1995-06-06 C Liu et al. (2014)
3 Zhangzangbo 2 Nepal 86.06 28.08 4501 10,800 2016-07-07 C Cook et al. (2017); Gimbert et al. (2017)
4 Sabai Tsho Nepal 86.84 27.74 4492 163,800 1998-09-03 P Lamsal et al. (2015); Osti and Egashira

(2009)
5 Lemthang Tsho Bhutan 89.58 28.07 4273 53,100 2015-06-28 C Gurung et al. (2017)
6 Chongbaxia Tsho TAR/China 89.74 28.21 5028 227,700 Spring–Summer 2001 P Komori et al. (2012)
7 Tshojo glacier Bhutan 90.16 28.10 4273 81,900 2009-07-29 P Yamanokuchi et al. (2011)
8 Luggye Tsho Bhutan 90.28 28.09 4623 140,400 1994-10-07 P Fujita et al. (2008); Watanbe and

Rothacher (1996)
9 Gangri Tsho III Bhutan 90.81 27.90 4826 26,100 Spring–Summer 1998 P Komori et al. (2012)
10 Ranzeria Co TAR/China 93.53 30.47 5051 246,600 2013-07-05 P Sun et al. (2014)
11 Tsho Ga TAR/China 94.00 30.83 4760 140,400 2009-04-29 P Nie et al. (pers. comm., 2017)
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